Fumanal Idocin, Javier

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Fumanal Idocin

First Name

Javier

person.page.departamento

Estadística, Informática y Matemáticas

person.page.instituteName

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 3 of 3
  • PublicationOpen Access
    Combinations of affinity functions for different community detection algorithms in social networks
    (University of Hawaii Press, 2021) Fumanal Idocin, Javier; Cordón, Óscar; Minárová, María; Alonso Betanzos, Amparo; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika
    Social network analysis is a popular discipline among the social and behavioural sciences, in which the relationships between different social entities are modelled as a network. One of the most popular problems in social network analysis is finding communities in its network structure. Usually, a community in a social network is a functional sub-partition of the graph. However, as the definition of community is somewhat imprecise, many algorithms have been proposed to solve this task, each of them focusing on different social characteristics of the actors and the communities. In this work we propose to use novel combinations of affinity functions, which are designed to capture different social mechanics in the network interactions. We use them to extend already existing community detection algorithms in order to combine the capacity of the affinity functions to model different social interactions than those exploited by the original algorithms.
  • PublicationOpen Access
    Análisis de redes sociales basado en las conquistas de César Borgia
    (Universidad de Málaga, 2021) Fumanal Idocin, Javier; Cordón, Óscar; Alonso Betanzos, Amparo; Bustince Sola, Humberto; Fernández Fernández, Francisco Javier; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika
    En este trabajo presentamos el modelado de redes sociales y detección de comunidades utilizando como base un evento histórico real, las conquistas de César Borgia en el siglo XV. Para ello, proponemos un nuevo conjunto de funciones, llamadas funciones de afinidad, disenadas para capturar la 'naturaleza de las interacciones locales entre cada par de actores en una red. Utilizando estas funciones, desarrollamos un nuevo algoritmo de detección de comunidades, el Borgia Clustering, donde las comunidades surgen naturalmente de un proceso de simulación de interacción de múltiples agentes en la red. También discutimos los efectos del tamaño y la escala de cada comunidad, y como pueden ser tomadas en cuenta en el proceso de simulación. Finalmente, comparamos nuestra detección de comunidades con otros algoritmos representativos, encontrando resultados favorables a nuestra propuesta.
  • PublicationOpen Access
    Community detection and social network analysis based on the Italian wars of the 15th century
    (Elsevier, 2020) Fumanal Idocin, Javier; Alonso Betanzos, Amparo; Cordón, Óscar; Bustince Sola, Humberto; Minárová, María; Institute of Smart Cities - ISC
    In this contribution we study social network modelling by using human interaction as a basis. To do so, we propose a new set of functions, affinities, designed to capture the nature of the local interactions among each pair of actors in a network. By using these functions, we develop a new community detection algorithm, the Borgia Clustering, where communities naturally arise from the multi-agent interaction in the network. We also discuss the effects of size and scale for communities regarding this case, as well as how we cope with the additional complexity present when big communities arise. Finally, we compare our community detection solution with other representative algorithms, finding favourable results.