Zubiate Orzanco, Pablo

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Zubiate Orzanco

First Name

Pablo

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 9 of 9
  • PublicationOpen Access
    Fiber-based label-free D-dimer detection for early diagnosis of venous thromboembolism
    (SPIE, 2020) Zubiate Orzanco, Pablo; Urrutia Azcona, Aitor; Ruiz Zamarreño, Carlos; Fernández Irigoyen, Joaquín; Giannetti, Ambra; Baldini, Francesco; Díaz Lucas, Silvia; Matías Maestro, Ignacio; Arregui San Martín, Francisco Javier; Santamaría Martínez, Enrique; Del Villar, Ignacio; Chiavaioli, Francesco; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    D-dimer is a useful diagnostic biomarker for deep vein thrombosis or pulmonary embolism, collectively referred to as venous thromboembolism (VTE). The ability to detect in real-time the amount of D-dimer with a fast and reliable method is a key step to anticipate the appearance of these diseases. The combination of fiber-optic-based platforms for biosensing with the nanotechnologies is opening up the chance for the development of in situ, portable, lightweight, versatile, reliable and high-performance optical sensing devices towards lab-on-fiber technology. The generation of lossy mode resonances (LMRs) by means of the deposition of nm-thick absorbing metal-oxide films on special geometric-modified fibers allows measuring precisely and accurately surface refractive index changes, which are due to the binding interaction between a biological recognition element and the analyte under investigation. This approach enhances the light-matter interaction in a strong way, thus turning out to be more sensitive compared to other optical technology platforms, such as fiber gratings or surface plasmon resonance. Here, the results of a highly specific and sensitive biosensor for the detection of D-dimer based on LMR in fiber-optics are presented by monitoring in real-time the shift of the LMR related to the biomolecule interactions thanks to a conventional wavelength-interrogation system and an ad-hoc developed microfluidics. A detection limit of 100 ng/mL, a value 5-fold below the clinical cutoff value, has been attained for D-dimer spiked in human serum. The comparison of the results achieved with proteomics-based methodologies, which allows for the identification of betaand gamma-chains of fibrinogen, demonstrates the ability of our platform to specifically (>90%) recognize D-dimer.
  • PublicationOpen Access
    Lossy mode resonance based microfluidic platform developed on planar waveguide for biosensing applications
    (MDPI, 2022) Benítez Pérez, Melanys; Zubiate Orzanco, Pablo; Del Villar, Ignacio; Socorro Leránoz, Abián Bentor; Matías Maestro, Ignacio; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    The development of resonance phenomena-based optical biosensors has gained relevance in recent years due to the excellent optical fiber properties and progress in the research on materials and techniques that allow resonance generation. However, for lossy mode resonance (LMR)-based sensors, the optical fiber presents disadvantages, such as the need for splicing the sensor head and the complex polarization control. To avoid these issues, planar waveguides such as coverslips are easier to handle, cost-effective, and more robust structures. In this work, a microfluidic LMR-based planar waveguide platform was proposed, and its use for biosensing applications was evaluated by detecting anti-immunoglobulin G (anti-IgG). In order to generate the wavelength resonance, the sensor surface was coated with a titanium dioxide (TiO2) thin-film. IgG antibodies were immobilized by covalent binding, and the detection assay was carried out by injecting anti-IgG in PBS buffer solutions from 5 to 20 μg/mL. The LMR wavelength shifted to higher values when increasing the analyte concentration, which means that the proposed system was able to detect the IgG/anti-IgG binding. The calibration curve was built from the experimental data obtained in three repetitions of the assay. In this way, a prototype of an LMR-based biosensing microfluidic platform developed on planar substrates was obtained for the first time
  • PublicationOpen Access
    Thin film coated D-shaped fiber regenerable biosensor
    (Optica, 2020) Santano Rivero, Desiree; Ciáurriz Gortari, Paula; Tellechea Malda, Edurne; Zubiate Orzanco, Pablo; Socorro Leránoz, Abián Bentor; Del Villar, Ignacio; Matías Maestro, Ignacio; Arregui San Martín, Francisco Javier; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC
    We present a novel covalent functionalization of a D-shape fiber biosensor based on Lossy Mode Resonances. IgG/anti-IgG model is applied to prove the regeneration of the union and thus the re-usability of the sensor.
  • PublicationOpen Access
    Lossy mode resonance enabling ultra-low detection limit for fibre-optic biosensors (INVITED)
    (Springer, 2020) Chiavaioli, Francesco; Giannetti, Ambra; Tombelli, Sara; Trono, Cosimo; Del Villar, Ignacio; Matías Maestro, Ignacio; Zubiate Orzanco, Pablo; Ruiz Zamarreño, Carlos; Arregui San Martín, Francisco Javier; Baldini, Francesco; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Gobierno de Navarra / Nafarroako Gobernua, 72/2015
    The combination of optical fibre-based biosensors with nanotechnologies is providing the opportunity for the development of in situ, portable, lightweight, versatile and high-sensitivity optical sensing platforms. We report on the generation of lossy mode resonances (LMRs) by means of the deposition of nm-thick SnO2 film on optical fibres. This allows measuring precisely and accurately the changes in refractive index of the fibre-surrounding medium with very high sensitivity compared to other optical technology platforms, such as long period grating or surface plasmon resonance. This approach, mixed with the use of specialty fiber structures such as Dshaped fibres, allows improving the light-matter interaction in strong way. Different imaging systems, i.e. SEM and TEM along with X-EDS tool, have been used to study the optical features of the fiber coating. The shift of the LMR has been monitored in real-time thanks to conventional wavelength interrogation system and ad hoc developed microfluidics. A big leap in performance has been attained by detecting femtomolar concentrations in human serum. The biosensor reusability has been also tested by using a solution of sodium dodecyl sulphate.
  • PublicationOpen Access
    Improving the width of lossy mode resonances (LMRs) in double-clad fibers
    (IEEE, 2023) Imas González, José Javier; Del Villar, Ignacio; Zubiate Orzanco, Pablo; Ruiz Zamarreño, Carlos; Matías Maestro, Ignacio; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    In this work, the characteristics of lossy mode resonances (LMRs) in double-clad fibers where the refractive index (RI) of the second cladding is lower than that of the first cladding are analyzed both numerically and experimentally. In the first place, the LMRs spectra obtained with a 75 nm TiO 2 thin film are simulated, and it is observed that a thicker second cladding improves the width of the resonances, making them narrower. Then, two experimental cases (no second cladding, and second cladding with thickness of 1.13 μm) are assessed, showing a good agreement with the previous simulations. Finally, an experimental refractometric study is carried out in liquids (surrounding medium refractive index in the 1.34 - 1.40 range) for both fibers, calculating the full width at 1 dB (FW 1dB ), the sensitivity, and the figure of merit (FOM). The FW 1dB is better for the LMR obtained on the fiber with second cladding while the sensitivity is slightly greater for the fiber without second cladding. In the case of the FOM, it is higher for the double-clad fiber as the narrowing of the resonances outweighs the lower sensitivity. These results show that the performance of LMR-based optical fiber sensors can be improved by employing double-clad fibers.
  • PublicationOpen Access
    Rheumatoid arthritis miRNA biomarker detection by means of LMR based fiber-optic biosensor
    (IEEE, 2020) Imas González, José Javier; Ruiz Zamarreño, Carlos; Zubiate Orzanco, Pablo; Campión, J.; Sánchez-Martín, L.; Matías Maestro, Ignacio; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, PJUPNA26
    Development of miRNA optical biosensors for disease diagnosis and monitoring has acquired relevance in recent years, due to the clinical importance of miRNA and the inherent advantages of optical sensors. Here, we present the utilization of a fiber optic sensor based on Lossy Mode Resonance (LMR) for the detection of miRNA hsa-miR-223, a promising biomarker for the diagnosis of rheumatoid arthritis (RA).
  • PublicationOpen Access
    Ammonia gas optical sensor based on lossy mode resonances
    (IEEE, 2023) Armas, Dayron; Zubiate Orzanco, Pablo; Ruiz Zamarreño, Carlos; Matías Maestro, Ignacio; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    This letter presents the fabrication and characterization of an ammonia (NH 3) gas optical sensor based on lossy mode resonances (LMRs). A chromium (III) oxide (Cr 2 O 3) thin film deposited onto a planar waveguide was used as LMR supporting coating. The obtained LMR shows a maximum attenuation wavelength or resonance wavelength centered at 673 nm. The optical properties of the coating can be modified as a function of the presence and concentration of NH 3 in the external medium. Consequently, the refractive index of the Cr 2 O 3 thin film will change, producing a red-shift of the resonance wavelength. Obtained devices were tested for different concentrations of NH 3 as well as repetitive cycles. Concentrations as low as 10 ppbv of NH 3 were detected at room temperature. Machine learning regression models were used to mitigate the cross-sensitivity of the device under temperature and humidity fluctuations.
  • PublicationOpen Access
    Lossy mode resonance-based optical immunosensor towards detecting gliadin in aqueous solutions
    (Elsevier, 2023) Benítez Pérez, Melanys; Zubiate Orzanco, Pablo; Socorro Leránoz, Abián Bentor; Matías Maestro, Ignacio; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    The development of accurate, intuitive, and easy-to-handle devices to detect different types of allergens is on the rise, as these are useful tools to guarantee consumer safety, which should be a priority for any food industry. Gliadin, one of the main proteins present in gluten, is the one responsible for triggering the immune system to produce autoantibodies in celiac disease, the most dangerous pathology related to gluten. Lossy Mode Resonance (LMR) based biosensors are lately known as a promising sensing technology and its implementation on planar waveguides has been shown to result in manageable, sustainable and robust structures. In this work, an LMR based microfluidic biosensor for gliadin detection is proposed, by coating a coverslip with Titanium Dioxide (TiO2) by Atomic Layer Deposition (ALD) to generate the resonance phenomena and functionalizing the sensor surface with anti-gliadin antibody (AGA) through covalent bond. The sensor was exposed to different gliadin concentrations in ultrapure water, in the range of 0.1–100 ppm with an accuracy of ±0.14 ppm, for a sensitivity of 1.35 ppm/ml. The calibration curve was obtained from the experimental data corresponding to three repetitions of the assay and a limit of detection (LOD) of 0.05 ppm was achieved. Moreover, the sensor was exposed to commercial flour samples, some of them labeled as gluten free (GF) and the response agreed with the expected results according to product label. Biosensor specificity to gliadin was demonstrated by injecting chicken egg white albumin without obtaining any significant response.
  • PublicationOpen Access
    Generation of lossy mode resonances (LMR) using perovskite nanofilms
    (Chinese Academy of Sciences, 2024) Armas, Dayron; Matías Maestro, Ignacio; López-González, M. Carmen; Ruiz Zamarreño, Carlos; Zubiate Orzanco, Pablo; Del Villar, Ignacio; Romero, Beatriz; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    The results presented here show for the first time the experimental demonstration of the fabrication of lossy mode resonance (LMR) devices based on perovskite coatings deposited on planar waveguides. Perovskite thin films have been obtained by means of the spin coating technique and their presence was confirmed by ellipsometry, scanning electron microscopy, and X-ray diffraction testing. The LMRs can be generated in a wide wavelength range and the experimental results agree with the theoretical simulations. Overall, this study highlights the potential of perovskite thin films for the development of novel LMR-based devices that can be used for environmental monitoring, industrial sensing, and gas detection, among other applications.