Person:
Encío Martínez, Ignacio

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Encío Martínez

First Name

Ignacio

person.page.departamento

Ciencias de la Salud

person.page.instituteName

IMAB. Research Institute for Multidisciplinary Applied Biology

ORCID

0000-0003-1732-1989

person.page.upna

455

Name

Search Results

Now showing 1 - 10 of 31
  • PublicationOpen Access
    In vitro assessment of the role of p53 on chemotherapy treatments in neuroblastoma cell lines
    (MDPI, 2021) Blanco Luquin, Idoia; Lázcoz Ripoll, Paula; Celay Leoz, Ion; Castresana, Javier S.; Encío Martínez, Ignacio; Ciencias de la Salud; Osasun Zientziak; Gobierno de Navarra / Nafarroako Gobernua
    Neuroblastoma is the most frequent malignant extracranial solid tumor of infancy. The overall objective of this work consists of determining the presence of alterations in the p53/MDM2 /p14ARF signaling pathway in neuroblastoma cell lines and deciphering their possible relationship with resistance to known antineoplastic drugs and to differentiation agents. Firstly, we characterized 10 neuroblastoma cell lines for alterations at the p53/MDM2/p14ARF signaling pathway by analysis of TP53 point mutations, MYCN and MDM2 amplification, and p14ARF methylation, homozygous deletions, and expression. Secondly, we chose SK-N-FI (mutated at TP53) and SK-N-Be(2) (wild-type TP53) cell lines, treated them with chemotherapeutic agents (doxorubicin, etoposide, cisplatin, and melphalan) and with two isomers of retinoic acid (RA): (9-cis and all-trans). Finally, we analyzed the distribution of the cell cycle, the induction of apoptosis, and the expression levels of p53, p21, and Bcl-2 in those two cell lines. P14ARF did not present promoter methylation, homozygous deletions, and protein expression in any of the 10 neuroblastoma cell lines. One TP53 point mutation was detected in the SK-N-FI cell line. MYCN amplification was frequent, while most cell lines did not present MDM2 amplification. Treatment of SK-N-FI and SK-N-Be(2) cells with doxorubicin, etopo-side, cisplatin, and melphalan increased apoptosis and blocked the cycle in G2/M, while retinoic acid isomers induced apoptosis and decreased the percentage of cells in S phase in TP53 mutated SK-N-FI cells, but not in TP53 wild-type SK-N-Be(2) cells. Treatment with cisplatin, melphalan, or 9-cis RA decreased p53 expression levels in SK-N-FI cells but not in SK-N-Be (2). The expression of p21 was not modified in either of the two cell lines. Bcl-2 levels were reduced only in SK-N-FI cells after treatment with cisplatin. However, treatments with doxorubicin, etoposide, or 9-cis-RA did not modify the levels of this protein in either of the two cell lines. In conclusion, TP53 mutated SK-N-FI cells respond better to the retinoic isomers than TP53 wild-type SK-N-Be(2) cells. Although these are in vitro results, it seems that deciphering the molecular alterations of the p53/MDM2/p14ARF signaling pathway prior to treating patients of neuroblastoma might be useful for standardizing therapies with the aim of improving survival.
  • PublicationOpen Access
    A fermented food product containing lactic acid bacteria protects ZDF rats from the development of type 2 diabetes
    (MDPI, 2019) Cabello Olmo, Miriam; Oneca Agurruza, María; Torre Hernández, Paloma; Sainz, Neira; Moreno Aliaga, María J.; Guruceaga, Elizabeth; Díaz, Jesús Vicente; Encío Martínez, Ignacio; Barajas Vélez, Miguel Ángel; Araña Ciordia, Miriam; Ciencias de la Salud; Osasun Zientziak; Ciencias; Zientziak; Gobierno de Navarra / Nafarroako Gobernua
    Type 2 diabetes (T2D) is a complex metabolic disease, which involves a maintained hyperglycemia due to the development of an insulin resistance process. Among multiple risk factors, host intestinal microbiota has received increasing attention in T2D etiology and progression. In the present study, we have explored the effect of long-term supplementation with a non-dairy fermented food product (FFP) in Zucker Diabetic and Fatty (ZDF) rats T2D model. The supplementation with FFP induced an improvement in glucose homeostasis according to the results obtained from fasting blood glucose levels, glucose tolerance test, and pancreatic function. Importantly, a significantly reduced intestinal glucose absorption was found in the FFP-treated rats. Supplemented animals also showed a greater survival suggesting a better health status as a result of the FFP intake. Some dissimilarities have been observed in the gut microbiota population between control and FFP-treated rats, and interestingly a tendency for better cardiometabolic markers values was appreciated in this group. However, no significant differences were observed in body weight, body composition, or food intake between groups. These findings suggest that FFP induced gut microbiota modifications in ZDF rats that improved glucose metabolism and protected from T2D development.
  • PublicationOpen Access
    Antidiabetic effects of Pediococcus acidilactici pA1c on HFD-induced mice
    (MDPI, 2022) Cabello Olmo, Miriam; Oneca Agurruza, María; Pajares Villandiego, María Josefa; Jiménez, Maddalen; Ayo, Josune; Encío Martínez, Ignacio; Barajas Vélez, Miguel Ángel; Araña Ciordia, Miriam; Ciencias de la Salud; Osasun Zientziak; Gobierno de Navarra / Nafarroako Gobernua, 0011-1365-2020-000086
    Prediabetes (PreD), which is associated with impaired glucose tolerance and fasting blood glucose, is a potential risk factor for type 2 diabetes mellitus (T2D). Growing evidence suggests the role of the gastrointestinal microbiota in both PreD and T2D, which opens the possibility for a novel nutritional approach, based on probiotics, for improving glucose regulation and delaying disease progression of PreD to T2D. In this light, the present study aimed to assess the antidiabetic properties of Pediococcus acidilactici (pA1c) in a murine model of high-fat diet (HFD)-induced T2D. For that purpose, C57BL/6 mice were given HFD enriched with either probiotic (1 × 1010 CFU/day) or placebo for 12 weeks. We determined body weight, fasting blood glucose, glucose tolerance, HOMA-IR and HOMA-β index, C-peptide, GLP-1, leptin, and lipid profile. We also measured hepatic gene expression (G6P, PEPCK, GCK, IL-1β, and IL-6) and examined pancreatic and intestinal histology (% of GLP-1+ cells, % of goblet cells and villus length). We found that pA1c supplementation significantly attenuated body weight gain, mitigated glucose dysregulation by reducing fasting blood glucose levels, glucose tolerance test, leptin levels, and insulin resistance, increased C-peptide and GLP-1 levels, enhanced pancreatic function, and improved intestinal histology. These findings indicate that pA1c improved HFD-induced T2D derived insulin resistance and intestinal histology, as well as protected from body weight increase. Together, our study proposes that pA1c may be a promising new dietary management strategy to improve metabolic disorders in PreD and T2D.
  • PublicationOpen Access
    Human microbiota network: unveiling potential crosstalk between the different microbiota ecosystems and their role in health and disease
    (MDPI, 2021) Martínez, José E.; Vargas González, Augusto; Pérez Sánchez, Tania; Encío Martínez, Ignacio; Cabello Olmo, Miriam; Barajas Vélez, Miguel Ángel; Ciencias de la Salud; Osasun Zientziak
    The human body is host to a large number of microorganisms which conform the human microbiota, that is known to play an important role in health and disease. Although most of the microorganisms that coexist with us are located in the gut, microbial cells present in other locations (like skin, respiratory tract, genitourinary tract, and the vaginal zone in women) also play a significant role regulating host health. The fact that there are different kinds of microbiota in different body areas does not mean they are independent. It is plausible that connection exist, and different studies have shown that the microbiota present in different zones of the human body has the capability of communicating through secondary metabolites. In this sense, dysbiosis in one body compartment may negatively affect distal areas and contribute to the development of diseases. Accordingly, it could be hypothesized that the whole set of microbial cells that inhabit the human body form a system, and the dialogue between the different host microbiotas may be a contributing factor for the susceptibility to developing diseased states. For this reason, the present review aims to integrate the available literature on the relationship between the different human microbiotas and understand how changes in the microbiota in one body region can influence other microbiota communities in a bidirectional process. The findings suggest that the different microbiotas may act in a coordinated way to decisively influence human well-being. This new integrative paradigm opens new insights in the microbiota field of research and its relationship with human health that should be taken into account in future studies.
  • PublicationOpen Access
    A novel prognostic biomarker panel for early‐stage colon carcinoma
    (MDPI, 2021) Azcue Sanromán, Pablo; Guerrero Setas, David; Encío Martínez, Ignacio; Ibáñez Beroiz, Berta; Mercado Gutiérrez, María R.; Vera García, Ruth; Gómez Dorronsoro, María Luisa; Ciencias de la Salud; Osasun Zientziak
    Molecular characterization of colorectal cancer has helped us understand better the biology of the disease. However, previous efforts have yet to provide significant clinical value in order to be integrated into clinical practice for patients with early‐stage colon cancer (CC). The purpose of this study was to assess PD‐L1, GLUT‐1, e‐cadherin, MUC2, CDX2, and microsatellite instability (dMMR) and to propose a risk‐panel with prognostic capabilities. Biomarkers were immunohistochemically assessed through tissue microarrays in a cohort of 144 patients with stage II/III colon cancer. A biomarker panel consisting of PD‐L1, GLUT‐1, dMMR, and potentially CDX2 was constructed that divided patients into low, medium, and high risk of overall survival or disease-free survival (DFS) in equally sized groups. Compared with low‐risk patients, medium‐risk patients have almost twice the risk of death (HR = 2.10 (0.99–4.46), p = 0.054), while high‐risk patients have almost four times the risk (HR = 3.79 (1.77–8.11), p = 0.001). The multivariate goodness of fit was 0.756 and was correlated with Kaplan–Meier curves (p = 0.002). Consistent results were found for DFS. This study provides a critical basis for the future development of an immunohistochemical assessment capable of discerning early‐stage CC patients as a function of their prognosis. This tool may aid with treatment personalization in daily clinical practice and improve survival outcomes.
  • PublicationOpen Access
    A combination of apple vinegar drink with Bacillus coagulans ameliorates high fat diet-induced body weight gain, insulin resistance and hepatic steatosis
    (MDPI, 2020) Urtasun Alonso, Raquel; Araña Ciordia, Miriam; Pajares Villandiego, María Josefa; Oneca Agurruza, María; Torre Hernández, Paloma; Barajas Vélez, Miguel Ángel; Encío Martínez, Ignacio; Ciencias de la Salud; Osasun Zientziak; Ciencias; Zientziak; Gobierno de Navarra / Nafarroako Gobernua
    Obesity is a worldwide epidemic characterized by excessive fat accumulation, associated with multiple comorbidities and complications. Emerging evidence points to gut microbiome as a driving force in the pathogenesis of obesity. Vinegar intake, a traditional remedy source of exogenous acetate, has been shown to improve glycemic control and to have anti-obesity effects. New functional foods may be developed by supplementing traditional food with probiotics. B. coagulans is a suitable choice because of its resistance to high temperatures. To analyze the possible synergic effect of Vinegar and B. coagulans against the metabolic alterations induced by a high fat diet (HFD), we fed twelve-week-old C57BL/6 mice with HFD for 5 weeks after 2 weeks of acclimation on a normal diet. Then, food intake, body weight, blood biochemical parameters, histology and liver inflammatory markers were analyzed. Although vinegar drink, either alone or supplemented with B. coagulans, reduced food intake, attenuated body weight gain and enhanced glucose tolerance, only the supplemented drink improved the lipid serum profile and prevented hepatic HFD-induced overexpression of CD36, IL-1β, IL-6, LXR and SREBP, thus reducing lipid deposition in the liver. The beneficial properties of the B. coagulans-supplemented vinegar appear to be mediated by a reduction in insulin and leptin circulating levels.
  • PublicationOpen Access
    Unveiling a new selenocyanate as a multitarget candidate with anticancer, antileishmanial and antibacterial potential
    (MDPI, 2022) Ramos Inza, Sandra; Henriquez-Figuereo, Andreina; Moreno, Esther; Berzosa, Melibea; Encío Martínez, Ignacio; Plano, Daniel; Sanmartín, Carmen; Ciencias de la Salud; Osasun Zientziak
    Currently, cancer, leishmaniasis and bacterial infections represent a serious public health burden worldwide. Six cinnamyl and benzodioxyl derivatives incorporating selenium (Se) as selenocyanate, diselenide, or selenide were designed and synthesized through a nucleophilic substitution and/or a reduction using hydrides. Ferrocene was also incorporated by a Friedel–Crafts acylation. All the compounds were screened in vitro for their antiproliferative, antileishmanial, and antibacterial properties. Their capacity to scavenge free radicals was also assessed as a first approach to test their antioxidant activity. Benzodioxyl derivatives 2a–b showed cytotoxicity against colon (HT-29) and lung (H1299) cancer cell lines, with IC50 values below 12 µM, and were also fairly selective when tested in nonmalignant cells. Selenocyanate compounds 1–2a displayed potent antileishmanial activity in L. major and L. infantum, with IC50 values below 5 µM. They also exhibited antibacterial activity in six bacterial strains, notably in S. epidermidis with MIC and MBC values of 12.5 µg/mL. Ferrocene-containing selenide 2c was also identified as a potent antileishmanial agent with radical scavenging activity. Remarkably, derivative 2a with a selenocyanate moiety was found to act as a multitarget compound with antiproliferative, leishmanicidal, and antibacterial activities. Thus, the current work showed that 2a could be an appealing scaffold to design potential therapeutic drugs for multiple pathologies.
  • PublicationOpen Access
    Transcriptional regulation of type 11 17β-hydroxysteroid dehydrogenase expression in prostate cancer cells
    (Elsevier, 2011) Rotinen Díaz, Mirja Sofia; Villar Bécares, Joaquín; Celay Leoz, Ion; Serrano Mendioroz, Irantzu; Notario, Vicente; Encío Martínez, Ignacio; Ciencias de la Salud; Osasun Zientziak; Gobierno de Navarra / Nafarroako Gobernua
    Type 11 Hydroxysteroid (17-beta) dehydrogenase (HSD17B11) catalyzes the conversion of 5α-androstan-3α,17β-diol into androsterone suggesting that it may play an important role in androgen metabolism. We previously described that overexpression of C/EBPα or C/EBPβ induced HSD17B11 expression in HepG2 cells but this process was not mediated by the CCAAT boxes located within its proximal promoter region. Here, we study HSD17B11 transcriptional regulation in prostate cancer (PC) cells. Transfection experiments showed that the region −107/+18 is sufficient for promoter activity in PC cells. Mutagenesis analysis indicated that Sp1 and C/EBP binding sites found in this region are essential for promoter activity. Additional experiments demonstrated that ectopic expression of Sp1 and C/EBPα upregulated HSD17B11 expression only in PC cell lines. Through DAPA and ChIP assays, specific recruitment of Sp1 and C/EBPα to the HSD17B11 promoter was detected. These results show that HSD17B11 transcription in PC cells is regulated by Sp1 and C/EBPα.
  • PublicationOpen Access
    Changes in gene expression profiling of apoptotic genes in neuroblastoma cell lines upon retinoic acid treatment
    (Public Library of Science, 2013) Celay Leoz, Ion; Blanco Luquin, Idoia; Lázcoz Ripoll, Paula; Rotinen Díaz, Mirja Sofia; Castresana, Javier S.; Encío Martínez, Ignacio; Ciencias de la Salud; Osasun Zientziak; Gobierno de Navarra / Nafarroako Gobernua
    To determine the effect of retinoic acid (RA) in neuroblastoma we treated RA sensitive neuroblastoma cell lines with 9-cis RA or ATRA for 9 days, or for 5 days followed by absence of RA for another 4 days. Both isomers induced apoptosis and reduced cell density as a result of cell differentiation and/or apoptosis. Flow cytometry revealed that 9-cis RA induced apoptosis more effectively than ATRA. The expression profile of apoptosis and survival pathways was cell line specific and depended on the isomer used.
  • PublicationOpen Access
    Actionable driver events in small cell lung cancer
    (MDPI, 2024) Gutiérrez Núñez, Mirian; Zamora Álvarez, Irene; Freeman, Michael R.; Encío Martínez, Ignacio; Rotinen Díaz, Mirja Sofia; Ciencias de la Salud; Osasun Zientziak
    Small cell lung cancer (SCLC) stands out as the most aggressive form of lung cancer, characterized by an extremely high proliferation rate and a very poor prognosis, with a 5-year survival rate that falls below 7%. Approximately two-thirds of patients receive their diagnosis when the disease has already reached a metastatic or extensive stage, leaving chemotherapy as the remaining first-line treatment option. Other than the recent advances in immunotherapy, which have shown moderate results, SCLC patients cannot yet benefit from any approved targeted therapy, meaning that this cancer remains treated as a uniform entity, disregarding intra- or inter-tumoral heterogeneity. Continuous efforts and technological improvements have enabled the identification of new potential targets that could be used to implement novel therapeutic strategies. In this review, we provide an overview of the most recent approaches for SCLC treatment, providing an extensive compilation of the targeted therapies that are currently under clinical evaluation and inhibitor molecules with promising results in vitro and in vivo.