Urriza Leoz, Miriam
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Urriza Leoz
First Name
Miriam
person.page.departamento
Agronomía, Biotecnología y Alimentación
person.page.instituteName
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
2 results
Search Results
Now showing 1 - 2 of 2
Publication Open Access Comparative genomics of native plasmids from plant pathogenic Gammaproteobacteria(Oxford University Press, 2025-04-01) Urriza Leoz, Miriam; Dimaria, Giulio; Oliveira, Luiz Orlando de; Catara, Vittoria; Murillo Martínez, Jesús; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura; Institute for Multidisciplinary Research in Applied Biology - IMAB; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaPlasmids are key in the evolution and adaptation of plant pathogenic Gammaproteobacteria (PPG), yet their diversity and functional contributions remain underexplored. Here, comparative genomics revealed extensive variation in plasmid size, replicon types, mobility, and genetic content across PPG. Most plasmids are small (< 200 kb), except in Pantoea, exhibiting high coding densities (76% to 78%). Five ancestral replicon types were identifed across multiple orders, indicating vertical descent yet effcient horizontal transfer across taxa, although with limited genetic conservation. Virulence plasmids are widespread (56% to 68%) but differ in virulence gene content across orders: type III effector (T3E) genes are common in Pseudomonas and Xanthomonas, but rare in Enterobacterales and Xylella, aligning with their smaller effector repertoires. Plasmids frequently carry regulatory genes, highlighting their role in bacterial phenotype modulation. Distinct patterns were observed among orders: Enterobacterales plasmids often harbor thiamin biosynthesis operons and transcriptional regulators but lack post-transcriptional regulators, while most Pseudomonas and Xanthomonas plasmids are mobile, enriched in T3E genes, and exhibit high insertion sequence densities, fostering DNA mobility. Resistance to ultraviolet light is common, but not to antimicrobial compounds. These fndings highlight the dynamic role of plasmids in spreading adaptive traits, shaping virulence, and driving the evolution of plant pathogenic bacteria.Publication Open Access Multiple relaxases contribute to the horizontal transfer of the virulence plasmids from the tumorigenic bacterium Pseudomonas syringae pv. savastanoi NCPPB 3335(Frontiers Media, 2022) Añorga García, Maite; Urriza Leoz, Miriam; Ramos, Cayo; Murillo Martínez, Jesús; Institute for Multidisciplinary Research in Applied Biology - IMABPseudomonas syringae pv. savastanoi NCPPB 3335 is the causal agent of olive knot disease and contains three virulence plasmids: pPsv48A (pA), 80 kb; pPsv48B (pB), 45 kb, and pPsv48C (pC), 42 kb. Here we show that pB contains a complete MPFT (previously type IVA secretion system) and a functional origin of conjugational transfer adjacent to a relaxase of the MOBP family; pC also contains a functional oriT-MOBP array, whereas pA contains an incomplete MPFI (previously type IVB secretion system), but not a recognizable oriT. Plasmid transfer occurred on solid and in liquid media, and on leaf surfaces of a non-host plant (Phaseolus vulgaris) with high (pB) or moderate frequency (pC); pA was transferred only occasionally after cointegration with pB. We found three plasmid-borne and three chromosomal relaxase genes, although the chromosomal relaxases did not contribute to plasmid dissemination. The MOBP relaxase genes of pB and pC were functionally interchangeable, although with di ering eciencies. We also identified a functional MOBQ mobilization region in pC, which could only mobilize this plasmid. Plasmid pB could be eciently transferred to strains of six phylogroups of P. syringae sensu lato, whereas pC could only be mobilized to two strains of phylogroup 3 (genomospecies 2). In two of the recipient strains, pB was stably maintained after 21 subcultures in liquid medium. The carriage of several relaxases by the native plasmids of P. syringae impacts their transfer frequency and, by providing functional diversity and redundancy, adds robustness to the conjugation system.