Publication:
Multiple relaxases contribute to the horizontal transfer of the virulence plasmids from the tumorigenic bacterium Pseudomonas syringae pv. savastanoi NCPPB 3335

Consultable a partir de

Date

2022

Director

Publisher

Frontiers Media
Acceso abierto / Sarbide irekia
Artículo / Artikulua
Versión publicada / Argitaratu den bertsioa

Project identifier

AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-115177RB-C21/ES/
AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-115177RB-C22/ES/

Abstract

Pseudomonas syringae pv. savastanoi NCPPB 3335 is the causal agent of olive knot disease and contains three virulence plasmids: pPsv48A (pA), 80 kb; pPsv48B (pB), 45 kb, and pPsv48C (pC), 42 kb. Here we show that pB contains a complete MPFT (previously type IVA secretion system) and a functional origin of conjugational transfer adjacent to a relaxase of the MOBP family; pC also contains a functional oriT-MOBP array, whereas pA contains an incomplete MPFI (previously type IVB secretion system), but not a recognizable oriT. Plasmid transfer occurred on solid and in liquid media, and on leaf surfaces of a non-host plant (Phaseolus vulgaris) with high (pB) or moderate frequency (pC); pA was transferred only occasionally after cointegration with pB. We found three plasmid-borne and three chromosomal relaxase genes, although the chromosomal relaxases did not contribute to plasmid dissemination. The MOBP relaxase genes of pB and pC were functionally interchangeable, although with di ering eciencies. We also identified a functional MOBQ mobilization region in pC, which could only mobilize this plasmid. Plasmid pB could be eciently transferred to strains of six phylogroups of P. syringae sensu lato, whereas pC could only be mobilized to two strains of phylogroup 3 (genomospecies 2). In two of the recipient strains, pB was stably maintained after 21 subcultures in liquid medium. The carriage of several relaxases by the native plasmids of P. syringae impacts their transfer frequency and, by providing functional diversity and redundancy, adds robustness to the conjugation system.

Keywords

Cytokinin biosynthesis, Type III effectors, Olive knot disease, Type IV secretion system, Mating pair formation, Pseudomonas amygdali, Pseudomonas savastanoi, Conjugation (mating)

Department

Institute for Multidisciplinary Research in Applied Biology - IMAB

Faculty/School

Degree

Doctorate program

Editor version

Funding entities

This work was funded by the Spanish Plan Nacional I+D+i grants PID2020-115177RB-C21 and PID2020- 115177RB-C22 financed by the Ministerio de Ciencia e Innovación and the Agencia Estatal de Investigación, MCIN/AEI/10.13039/501100011033/, Spain.

© 2022 Añorga, Urriza, Ramos and Murillo. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.