Jarén Ceballos, Carmen
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Jarén Ceballos
First Name
Carmen
person.page.departamento
Ingeniería
person.page.instituteName
IS-FOOD. Research Institute on Innovation & Sustainable Development in Food Chain
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
37 results
Search Results
Now showing 1 - 10 of 37
Publication Open Access On-site identification of esca-affected vines using hyperspectral imaging(Hellenic Society of Agricultural Engineers, 2025) León Ecay, Sara; Ruiz de Gauna González, Jon; López Maestresalas, Ainara; Jarén Ceballos, Carmen; Arazuri Garín, Silvia; Ingeniería; Ingeniaritza; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura; Institute on Innovation and Sustainable Development in Food Chain - ISFOODEsca represents one of the greatest threats to modern viticulture as it causes large annual economic losses. At present, there is a lack of effective strategies for disease control, so a technique capable of detecting affected vines would allow annual monitoring of disease incidence in the vineyard leading to a better crop management and decision making. This study evaluates close-range hyperspectral imaging for the detection of esca naturally infected vines. Images of 11 vines of the Tempranillo variety grown on plots in Bodegas Otazu, in Etxauri (Navarre, Spain) were acquired. A Specim IQ snapshot hyperspectral camera was used to record the images on August, 21 2023 on the field under natural light conditions. The camera has a spectral resolution of 7 nm (204 wavelengths) and a spatial resolution of 512 x 512 in the 400 ¿ 1000 nm spectral range (Vis-NIR). An individual image was acquired for each vine, of which 9 were symptomatic and 2 asymptomatic. Three classes were analysed: asymptomatic leaves of asymptomatic vines (Class 1), asymptomatic leaves of symptomatic vines (Class 2) and asymptomatic areas of symptomatic leaves of symptomatic vines (Class 3). A total of 300 pixels were randomly selected, 100 per class, for further analysis. Partial Least Square Discriminant Analysis (PLSDA) was used to classify the pixels into the three categories. An accuracy of 86% was achieved in the cross-validation dataset. Models were externally validated using an image of an asymptomatic vine and an image of a symptomatic vine. The visualisation of the images showed that the majority of the pixels of the asymptomatic vine image were classified as class 1, while most of the pixels of the symptomatic vine image were classified as either class 2 or class 3. Hence, this study demonstrated the potential of close-range HSI for the on-site detection of esca.Publication Open Access Proyecto Agroinc: prevención del impacto ambiental de incendios provocados por cosechadoras(Interempresas Media, 2022) Arazuri Garín, Silvia; Mangado Ederra, Jesús; López Maestresalas, Ainara; López Molina, Carlos; Angulo Muñoz, Blanca; Arnal Atarés, Pedro; Jarén Ceballos, Carmen; Ingeniería; Ingeniaritza; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Proyectos e Ingeniería Rural; Landa Ingeniaritza eta Proiektuak; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD; Gobierno de Navarra / Nafarroako GobernuaLas cosechadoras de cereales, por las condiciones ambientales en las que trabajan, alta temperatura y baja humedad, tanto ambiental como del producto que están cosechando, pueden provocar accidentalmente incendios durante la época de recolección. Los daños económicos y medioambientales que estos incendios suponen pueden ser muy importantes, ya que las condiciones de propagación del fuego son óptimas. Los principales objetivos de este proyecto han sido evaluar el impacto ambiental de los incendios producidos en Navarra en los últimos años y establecer una guía de buenas prácticas para su prevención.Publication Open Access Análisis espacio-temporal de los accidentes mortales con tractor en España durante el período 2010-2019(Interempresas Media, 2023) Arazuri Garín, Silvia; Ibarrola, Alicia; Mangado Ederra, Jesús; Adin Urtasun, Aritz; Arnal Atarés, Pedro; López Maestresalas, Ainara; Jarén Ceballos, Carmen; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Ingeniería; IngeniaritzaEl sector agrario y el de la construcción son los que presentan los índices de incidencia de accidentes de trabajo mortales más altos de nuestro país, según los datos recogidos por el Instituto Nacional de Seguridad y Salud en el Trabajo (INSST) (2021) dependiente del Ministerio de Trabajo y Economía Social (Cirauqui, 2022). Si tenemos en cuenta la evolución de estos índices, el sector agrario es el único que no ha mejorado dicho índice desde la aparición de la Ley 31/1995 de prevención de riesgos laborales y su siniestralidad continúa aumentando (Fundación Mapfre 2020). Pero, ¿qué ocurre cuando el accidente lo sufren personas que no encajan en la definición legal de trabajador? Estos accidentes no son considerados 'accidente de trabajo' y, por tanto, escapan a todas las estadísticas y datos oficiales del INSST. Este suele ser el caso de muchos accidentes que sufren personas jubiladas, menores de 16 años, familiares colaboradores, etc. que no son personas vinculadas a la actividad laboral tal y como se define en la legislación. Según Arana et al. (2010) de un total de 388 accidentes mortales ocurridos en España con maquinaria agrícola durante los años 2004-2008, solamente el 61,85% de ellos tuvieron carácter oficial. Las personas mayores fueron el sector de la población con un mayor riesgo, seguidos de los niños y las personas ajenas al sector agrario. La mayoría de las muertes fueron debidas al vuelco de tractores sin estructuras de protección.Publication Open Access Hyperspectral imaging using notions from type-2 fuzzy sets(Springer, 2019) López Maestresalas, Ainara; Miguel Turullols, Laura de; López Molina, Carlos; Arazuri Garín, Silvia; Bustince Sola, Humberto; Jarén Ceballos, Carmen; Ingeniería; Ingeniaritza; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaFuzzy set theory has developed a prolific armamentarium of mathematical tools for each of the topics that has fallen within its scope. One of such topics is data comparison, for which a range of operators has been presented in the past. These operators can be used within the fuzzy set theory, but can also be ported to other scenarios in which data are provided in various representations. In this work, we elaborate on notions for type-2 fuzzy sets, specifically for the comparison of type-2 fuzzy membership degrees, to create function comparison operators. We further apply these operators to hyperspectral imaging, in which pixelwise data are provided as functions over a certain energy spectra. The performance of the functional comparison operators is put to the test in the context of in-laboratory hyperspectral image segmentation.Publication Open Access Influencia de factores de cultivo y conservación en el contenido en azúcares reductores en patata(Universidad de Sevilla, 2023) Jarén Ceballos, Carmen; Peraza Alemán, Carlos Miguel; Mangado Ederra, Jesús; López Maestresalas, Ainara; Arazuri Garín, Silvia; Ingeniería; Ingeniaritza; Institute on Innovation and Sustainable Development in Food Chain - ISFOODLa patata es uno de los alimentos más importante del mundo y una de las formas más habituales de consumirla es como patatas fritas. Al freírla a altas temperaturas, los azúcares reductores y la asparagina de la patata pueden dar lugar a acrilamidas, por medio de la reacción de Maillard. La acrilamida está clasificada como sustancia probablemente cancerígena para el ser humano. Por eso es importante que las patatas destinadas a fritura tengan un bajo contenido en azúcares reductores. Este contenido depende de factores genéticos, medioambientales, culturales y condiciones de almacenamiento. Por ello, en este trabajo se pretende analizar algunos de esos factores en una variedad rica en azúcares reductores como es Jaerla. Los factores analizados fueron el estrés hídrico durante el cultivo, dos temperaturas de almacenamiento (8 y 13ºC) y tiempo de almacenamiento en las anteriores temperaturas, desde 0 hasta 13 semanas. Las muestras de patatas de cada uno de los tratamientos se liofilizaron y se determinó su contenido en azúcares: glucosa, fructosa y sacarosa. Los datos fueron analizados con R-Studio. Solo se encontraron diferencias significativas en el factor temperatura de conservación para los tres azúcares, obteniéndose los valores más altos en las patatas conservadas a 8ºC.Publication Open Access Detection of minced lamb and beef fraud using NIR spectroscopy(Elsevier, 2019) López Maestresalas, Ainara; Insausti Barrenetxea, Kizkitza; Jarén Ceballos, Carmen; Pérez Roncal, Claudia; Urrutia Vera, Olaia; Beriain Apesteguía, María José; Arazuri Garín, Silvia; Ingeniaritza; Agronomia, Bioteknologia eta Elikadura; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD; Ingeniería; Agronomía, Biotecnología y Alimentación; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaThe aim of this work was to investigate the feasibility of near-infrared spectroscopy (NIRS), combined with chemometric techniques, to detect fraud in minced lamb and beef mixed with other types of meats. For this, 40 samples of pure lamb and 30 samples of pure beef along with 160 samples of mixed lamb and 156 samples of mixed beef at different levels: 1-2-5-10% (w/w) were prepared and analyzed. Spectral data were pre-processed using different techniques and explored by a Principal Component Analysis (PCA) to find out differences among pure and mixed samples. Moreover, a PLS-DA was carried out for each type of meat mixture. Classification results between 78.95 and 100% were achieved for the validation sets. Better rates of classification were obtained for samples mixed with pork meat, meat of Lidia breed cattle and foal meat than for samples mixed with chicken in both lamb and beef. Additionally, the obtained results showed that this technology could be used for detection of minced beef fraud with meat of Lidia breed cattle and foal in a percentage equal or higher than 2 and 1%, respectively. Therefore, this study shows the potential of NIRS combined with PLS-DA to detect fraud in minced lamb and beef.Publication Open Access Análisis de la siniestralidad por vuelco de tractor en el período 2017-2021(Universidad de Sevilla, 2023) Jarén Ceballos, Carmen; Casuso, G.; Mangado Ederra, Jesús; López Maestresalas, Ainara; Arnal Atarés, Pedro; Arazuri Garín, Silvia; Ingeniería; Ingeniaritza; Institute on Innovation and Sustainable Development in Food Chain - ISFOODA pesar de los avances que se dan en el ámbito de la seguridad laboral en el sector agrario, los accidentes se siguen produciendo sin que mejore la situación. Los accidentes más graves, por el elevado número de muertos todos los años, son los debidos al vuelco del tractor. En el presente trabajo se ha llevado a cabo el análisis de la influencia de distintas variables continuas y discretas (tamaño de explotación, pendiente, superficie agrícola utilizada (SAU)/número de explotaciones y tipo de cultivo) sobre 63 accidentes graves y mortales sucedidos en España a causa del vuelco. Han destacado las relaciones de los accidentes con las variables pendiente, tamaño y tipo de cultivo, siendo las provincias con mayor tasa de accidentalidad aquellas con explotaciones más pequeñas, situadas en terrenos más escarpados y con cultivos leñosos. Las variables con mayor relación entre sí han sido la pendiente y el tamaño, a su vez con cierta conexión con el tipo de cultivo.Publication Open Access Fatal tractor accidents in the agricultural sector in Spain during the past decade(MDPI, 2022) Jarén Ceballos, Carmen; Ibarrola, Alicia; Mangado Ederra, Jesús; Adin Urtasun, Aritz; Arnal Atarés, Pedro; López Maestresalas, Ainara; Ríos Eraso, Alonso; Arazuri Garín, Silvia; Ingeniería; Ingeniaritza; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaCurrently, there is a discrepancy between the number of occupational accidents in the agricultural sector reported by Spanish governmental sources and those actually occurring in general. This is mainly due to the official definition of ‘occupational accident’ in the current regulations. In order to be able to analyse all fatal accidents involving tractors, other sources of information must therefore be used. In this study, we have collected the news published in different media during the period 2010–2019. Statistical models that take into account the spatial and temporal dependence of the data were used to estimate the rates of fatal accidents in the provinces of Spain using the Bayesian inference technique INLA (Integrated Nested Laplace Approximation). The results obtained showed that the total number of fatal accidents in that period was 644. The crude rates of fatal accidents per province ranged from 0 to 223.5 fatal accidents per 100,000 registered tractors. In addition, the overall rate for Spain as a whole was 6.87 fatal accidents per 100,000 tractors. As in other EU countries, it was found that the regions with the highest number of accidents were also related to steep terrain, to an older tractor fleet and to horticultural crops and vineyards.Publication Open Access Potential of NIRS technology for the determination of cannabinoid content in industrial hemp (Cannabis sativa L.)(MDPI, 2022) Jarén Ceballos, Carmen; Zambrana, P.; Pérez Roncal, Claudia; López Maestresalas, Ainara; Ábrego Arlegui, Andrés; Arazuri Garín, Silvia; Institute on Innovation and Sustainable Development in Food Chain - ISFOODIndustrial hemp (Cannabis sativa L.) is a plant native to Asia, and is considered to be a primary source of food, textile fiber, and medicines. It is characterized by containing minimal concentrations of delta-9 tetrahydrocannabidol (THC), which is the main psychoactive chemical component, and cannabidiol (CBD), a non-psychoactive substance. In most European countries, the maximum concentration legally allowed for cultivation is 0.2% of THC, and it is currently under debate whether to increase this level to 0.3%. Moreover, in many countries its production is being regularized and legalized, increasing the need for a rapid analysis method. The present work evaluated the cannabinoid content in hemp (Cannabis sativa L.) using near infrared spectroscopy (NIRS) technology in combination with chemometric techniques. For this, several samples of the Kompolti variety were analyzed. Samples were dried and ground, and the content of total THC (%) and total CBD (%) was determined by high performance liquid chromatography (HPLC) with a diode array detector as reference measurements, and then the spectra were collected by NIRS. Principal component analysis and partial least square regression models were developed. Good coefficients of determination of cross-validation of 0.77 for THC and CBD, and a ratio of prediction to deviation >2 for total THC and CBD, were achieved. The results obtained show that NIRS technology has potential for the quantitative determination of cannabinoids. Therefore, this analytical method would allow a simpler, more robust, precise, and sustainable estimation than the current HPLC approach.Publication Open Access Prediction of main potato compounds by NIRS(AIDIC, 2017) López Maestresalas, Ainara; Pérez Roncal, Claudia; Tierno, Roberto; Arazuri Garín, Silvia; Ruiz de Galarreta, José Ignacio; Jarén Ceballos, Carmen; Proyectos e Ingeniería Rural; Landa Ingeniaritza eta Proiektuak; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaPotato (Solanum tuberosum, L) compounds are generally determined by analytical methods including gasliquid chromatography (GLC), HPLC and UV-VIS spectrophotometry. These methods require a lot of time and are destructive. Therefore, they seem to be not suitable for in-line applications in the food industry. Nearinfrared spectroscopy (NIRS) is a technique that presents some advantages over reference methods for quantitative analysis of agricultural and food products since it is fast, reliable and non-destructive. For this reason, in this study, quantitative analyses were carried out to determine main compounds in potatoes using NIRS. Potato tubers grown in two consecutive years were used for the analyses. NIR spectral acquisition was acquired on lyophilized samples. In year 1, a total of 135 samples were used while 228 samples were used in year 2. Lyophilized samples were also scanned by NIRS, two replicates per samples were acquired and the mean spectrum of each sample was used for the analysis. Different chemical analyses were carried out each year. Thus, in year 1 the following parameters were quantified: reducing sugars (RS) and nitrogen (N), whereas in year 2, total soluble phenolics (TSP) and hydrophilic antioxidant capacity (HAC) were extracted and quantified. Then, chemometric analyses were performed using Unscrambler X (version 10.3, CAMO software AS, Oslo, Norway) to correlate wet chemical analysis with spectral data. Quantitative analyses based on PLS regression models were developed in order to predict the above chemical compounds of tubers in a non-destructive manner. Good PLS regression models were obtained for the prediction of nitrogen and TSP with coefficients of determination (R2) above 0.83. Moreover, PLS models obtained for the estimation of HAC could be used for screening and approximate calibrations.