Person:
Larraya Reta, Luis María

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Larraya Reta

First Name

Luis María

person.page.departamento

Agronomía, Biotecnología y Alimentación

person.page.instituteName

IMAB. Research Institute for Multidisciplinary Applied Biology

ORCID

0000-0002-3385-2432

person.page.upna

2245

Name

Search Results

Now showing 1 - 10 of 19
  • PublicationOpen Access
    Towards understanding of fungal biocontrol mechanisms of different yeasts antagonistic to Botrytis cinerea through exometabolomic analysis
    (Elsevier, 2022) Fernández San Millán, Alicia; Gamir, Jordi; Larraya Reta, Luis María; Farrán Blanch, Inmaculada; Veramendi Charola, Jon; Institute for Multidisciplinary Research in Applied Biology - IMAB; Gobierno de Navarra / Nafarroako Gobernua; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    There is increased interest in research on yeasts as potential phytopathogen biocontrol agents due to increasing restrictions in the use of chemical pesticides. Yeast strains from a range of genera and species have been reported to inhibit postharvest decay in different fruits. However, the mechanisms behind these yeast biocontrol capacities have not been completely deciphered because they are complex and act synergistically. In this study, we performed a thorough untargeted analysis of the exometabolome generated in a co-culture of the fungal plant pathogen Botrytis cinerea with four antagonistic yeast strains: Pichia fermentans (two strains), Issatchenkia terricola and Wickerhamomyces anomalus. As a result, general and strain-specific antifungal mechanisms and molecules were identified. The P. fermentans strains secreted the highest number of differential metabolites to the extracellular medium when co-cultured with B. cinerea. In vitro antagonistic and in vivo pathogen protection assays were performed with the selected metabolites. Among a plethora of 46 differentially secreted metabolites related to yeast-fungus competitive interaction, the phenylpropanoid trans-cinnamic acid and the alkaloid indole-3-carboxaldehyde were identified as the best antagonistic metabolites against gray mold infection under in vivo protection assays. Both metabolites caused damage to the fungal membrane and increased ROS generation in spores of B. cinerea. In addition, enhanced yeast secretion to the extracellular medium of oxylipins, dipeptides, alkaloids or antibiotics deserve to be further investigated as signaling or antagonistic molecules. This study opens the door to future investigations of roles of these molecules in yeast metabolism and application of this knowledge for biotechnological purposes.
  • PublicationOpen Access
    NTRC and thioredoxin f overexpression differentially induces starch accumulation in tobacco leaves
    (MDPI, 2019) Ancín Rípodas, María; Larraya Reta, Luis María; Fernández San Millán, Alicia; Veramendi Charola, Jon; Burch Smith, Tessa; Farrán Blanch, Inmaculada; Institute for Multidisciplinary Research in Applied Biology - IMAB
    Thioredoxin (Trx) f and NADPH-dependent Trx reductase C (NTRC) have both been proposed as major redox regulators of starch metabolism in chloroplasts. However, little is known regarding the specific role of each protein in this complex mechanism. To shed light on this point, tobacco plants that were genetically engineered to overexpress the NTRC protein from the chloroplast genome were obtained and compared to previously generated Trx f-overexpressing transplastomic plants. Likewise, we investigated the impact of NTRC and Trx f deficiency on starch metabolism by generating Nicotiana benthamiana plants that were silenced for each gene. Our results demonstrated that NTRC overexpression induced enhanced starch accumulation in tobacco leaves, as occurred with Trx f. However, only Trx f silencing leads to a significant decrease in the leaf starch content. Quantitative analysis of enzyme activities related to starch synthesis and degradation were determined in all of the genotypes. Zymographic analyses were additionally performed to compare the amylolytic enzyme profiles of both transplastomic tobacco plants. Our findings indicated that NTRC overexpression promotes the accumulation of transitory leaf starch as a consequence of a diminished starch turnover during the dark period, which seems to be related to a significant reductive activation of ADP-glucose pyrophosphorylase and/or a deactivation of a putative debranching enzyme. On the other hand, increased starch content in Trx f-overexpressing plants was connected to an increase in the capacity of soluble starch synthases during the light period. Taken together, these results suggest that NTRC and the ferredoxin/Trx system play distinct roles in starch turnover.
  • PublicationOpen Access
    Metschnikowia pulcherrima as an efficient biocontrol agent of Botrytis cinerea infection in apples: unraveling protection mechanisms through yeast proteomics
    (Elsevier, 2023) Fernández San Millán, Alicia; Fernández Irigoyen, Joaquín; Santamaría Martínez, Enrique; Larraya Reta, Luis María; Farrán Blanch, Inmaculada; Veramendi Charola, Jon; Ciencias de la Salud; Osasun Zientziak; Institute for Multidisciplinary Research in Applied Biology - IMAB; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    The results obtained in this study show that the Mp-30 strain of Metschnikowia pulcherrima is able to completely prevent Botrytis cinerea infection in apples, which is a major postharvest disease of fruits throughout the world. We have observed that although Mp-30 is able to rapidly colonize wounds, sequestrate iron and secrete antifungal compounds, other unknown mechanisms that occur in the early phase of the yeast-fungal interaction must be implicated in the biocontrol response. The main objective of this study was to identify the pathways involved in the mechanism of action of Mp-30 against B. cinerea in apples. Therefore, differentially accumulated yeast proteins in the presence/absence of B. cinerea on wounded apples were studied to elucidate Mp-30 biocontrol mechanisms and regulation at the protein level. A comparative proteomic analysis showed that 114 yeast proteins were increased and 61 were decreased. The Mp-30 antagonistic response mainly showed the increase of (1) gene expression and protein translation related proteins, (2) trafficking and vesicle-mediated transport related proteins, (3) pyruvate metabolism and mitochondrial proteins related to energy and amino acid production, (4) fatty acid synthesis, and (5) cell envelope related proteins. On the other hand, redox homeostasis, and amino acid and carbon metabolism were downregulated. Since there is no yeast growth enhancement associated with the presence of B. cinerea, such regulation mechanisms may be related to the reprogramming of metabolism, synthesis of new compounds and reorganization of yeast cell structure. Indeed, the results show that several pathways cooperate in restructuring the plasma membrane and cell wall composition, highlighting their major role in the antagonistic interactions for apple protection against gray mold proliferation. These results are of great interest since they provide a clear insight into the yeast mechanisms involved in B. cinerea inactivation during the first hours of contact in the wounded fruit. They shed light on the unknown yeast molecular biocontrol mechanisms.
  • PublicationOpen Access
    Genetic linkage map of the edible basidiomycete Pleurotus ostreatus
    (American Society for Microbiology, 2000) Larraya Reta, Luis María; Pérez Garrido, María Gumersinda; Ritter, Enrique; Pisabarro de Lucas, Gerardo; Ramírez Nasto, Lucía; Producción Agraria; Nekazaritza Ekoizpena; Gobierno de Navarra / Nafarroako Gobernua; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    We have constructed a genetic linkage map of the edible basidiomycete Pleurotus ostreatus (var. Florida). The map is based on the segregation of 178 random amplified polymorphic DNA and 23 restriction fragment length polymorphism markers; four hydrophobin, two laccase, and two manganese peroxidase genes; both mating type loci; one isozyme locus (est1); the rRNA gene sequence; and a repetitive DNA sequence in a population of 80 sibling monokaryons. The map identifies 11 linkage groups corresponding to the chromosomes of P. ostreatus, and it has a total length of 1,000.7 centimorgans (cM) with an average of 35.1 kbp/cM. The map shows a high correlation (0.76) between physical and genetic chromosome sizes. The number of crossovers observed per chromosome per individual cell is 0.89. This map covers nearly the whole genome of P. ostreatus.
  • PublicationOpen Access
    Quantitative trait loci controlling vegetative growth rate in the edible basidiomycete Pleurotus ostreatus
    (American Society for Microbiology, 2002) Larraya Reta, Luis María; Idareta Olagüe, Eneko; Arana, Dani; Ritter, Enrique; Pisabarro de Lucas, Gerardo; Ramírez Nasto, Lucía; Producción Agraria; Nekazaritza Ekoizpena; Gobierno de Navarra / Nafarroako Gobernua; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Mycelium growth rate is a quantitative characteristic that exhibits continuous variation. This trait has applied interest, as growth rate is correlated with production yield and increased advantage against competitors. In this work, we studied growth rate variation in the edible basidiomycete Pleurotus ostreatus growing as monokaryotic or dikaryotic mycelium on Eger medium or on wheat straw. Our analysis resulted in identification of several genomic regions (quantitative trait loci [QTLs]) involved in the control of growth rate that can be mapped on the genetic linkage map of this fungus. In some cases monokaryotic and dikaryotic QTLs clustered at the same map position, indicating that there are principal genomic areas responsible for growth rate control. The availability of this linkage map of growth rate QTLs can help in the design of rational strain breeding programs based on genomic information.
  • PublicationOpen Access
    New in vivo approach to broaden the thioredoxin family interactome in chloroplasts
    (MDPI, 2022) Ancín Rípodas, María; Fernández Irigoyen, Joaquín; Santamaría Martínez, Enrique; Larraya Reta, Luis María; Fernández San Millán, Alicia; Veramendi Charola, Jon; Farrán Blanch, Inmaculada; Ciencias de la Salud; Osasun Zientziak; Institute for Multidisciplinary Research in Applied Biology - IMAB
    Post-translational redox modifications provide an important mechanism for the control of major cellular processes. Thioredoxins (Trxs), which are key actors in this regulatory mechanism, are ubiquitous proteins that catalyse thiol-disulfide exchange reactions. In chloroplasts, Trx f, Trx m and NADPH-dependent Trx reductase C (NTRC) have been identified as transmitters of the redox signal by transferring electrons to downstream target enzymes. The number of characterised Trx targets has greatly increased in the last few years, but most of them were determined using in vitro procedures lacking isoform specificity. With this background, we have developed a new in vivo approach based on the overexpression of His-tagged single-cysteine mutants of Trx f, Trx m or NTRC into Nicotiana benthamiana plants. The over-expressed mutated Trxs, capable of forming a stable mixed disulfide bond with target proteins in plants, were immobilised on affinity columns packed with Ni-NTA agarose, and the covalently linked targets were eluted with dithiothreitol and identified by mass spectrometry-based proteomics. The in vivo approach allowed identification of 6, 9 and 42 new potential targets for Trx f, Trx m and NTRC, respectively, and an apparent specificity between NTRC and Trxs was achieved. Functional analysis showed that these targets are involved in several cellular processes.
  • PublicationOpen Access
    Overexpression of thioredoxin m in tobacco chloroplasts inhibits the protein kinase STN7 and alters photosynthetic performance
    (Oxford University Press, 2019) Ancín Rípodas, María; Fernández San Millán, Alicia; Larraya Reta, Luis María; Morales Iribas, Fermín; Veramendi Charola, Jon; Aranjuelo Michelena, Iker; Farrán Blanch, Inmaculada; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua
    The activity of the protein kinase STN7, involved in phosphorylation of the light-harvesting complex II (LHCII) proteins, has been reported as being co-operatively regulated by the redox state of the plastoquinone pool and the ferredoxin–thioredoxin (Trx) system. The present study aims to investigate the role of plastid Trxs in STN7 regulation and their impact on photosynthesis. For this purpose, tobacco plants overexpressing Trx f or m from the plastid genome were characterized, demonstrating that only Trx m overexpression was associated with a complete loss of LHCII phosphorylation that did not correlate with decreased STN7 levels. The absence of phosphorylation in Trx m-overexpressing plants impeded migration of LHCII from PSII to PSI, with the concomitant loss of PSI–LHCII complex formation. Consequently, the thylakoid ultrastructure was altered, showing reduced grana stacking. Moreover, the electron transport rate was negatively affected, showing an impact on energy-demanding processes such as the Rubisco maximum carboxylation capacity and ribulose 1,5-bisphosphate regeneration rate values, which caused a strong depletion in net photosynthetic rates. Finally, tobacco plants overexpressing a Trx m mutant lacking the reactive redox site showed equivalent physiological performance to the wild type, indicating that the overexpressed Trx m deactivates STN7 in a redox-dependent way.
  • PublicationOpen Access
    Mapping of genomic regions (quantitative trait loci) controlling production and quality in industrial cultures of the edible basidiomycete Pleurotus ostreatus
    (American Society for Microbiology, 2003) Larraya Reta, Luis María; Alfonso Esquíroz, Mikel; Pisabarro de Lucas, Gerardo; Ramírez Nasto, Lucía; Producción Agraria; Nekazaritza Ekoizpena; Gobierno de Navarra / Nafarroako Gobernua
    Industrial production of the edible basidiomycete Pleurotus ostreatus (oyster mushroom) is based on a solid fermentation process in which a limited number of selected strains are used. Optimization of industrial mushroom production depends on improving the culture process and breeding new strains with higher yields and productivities. Traditionally, fungal breeding has been carried out by an empirical trial and error process. In this study, we used a different approach by mapping quantitative trait loci (QTLs) controlling culture production and quality within the framework of the genetic linkage map of P. ostreatus. Ten production traits and four quality traits were studied and mapped. The production QTLs identified explain nearly one-half of the production variation. More interestingly, a single QTL mapping to the highly polymorphic chromosome VII appears to be involved in control of all the productivity traits studied. Quality QTLs appear to be scattered across the genome and to have less effect on the variation of the corresponding traits. Moreover, some of the new hybrid strains constructed in the course of our experiments had production or quality values higher than those of the parents or other commercial strains. This approach opens the possibility of marker-assisted selection and breeding of new industrial strains of this fungus.
  • PublicationOpen Access
    Elevated CO2 has concurrent effects on leaf and grain metabolism but minimal effects on yield in wheat
    (Oxford University Press, 2020) Tcherkez, Guillaume; Ben Mariem, Sinda; Larraya Reta, Luis María; García Mina, José M.; Zamarreño, Ángel M.; Paradela, Alberto; Cui, Jing; Badeck, Franz-Werner; Meza, Diego; Rizza, Fulvia; Bunce, James; Han, Xue; Tausz-Posch, Sabine; Cattivelli, Luigi; Fangmeier, Andreas; Aranjuelo Michelena, Iker; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura; Gobierno de Navarra / Nafarroako Gobernua, PI040 TRIGOCLIM
    While the general effect of CO2 enrichment on photosynthesis, stomatal conductance, N content, and yield has been documented, there is still some uncertainty as to whether there are interactive effects between CO2 enrichment and other factors, such as temperature, geographical location, water availability, and cultivar. In addition, the metabolic coordination between leaves and grains, which is crucial for crop responsiveness to elevated CO2, has never been examined closely. Here, we address these two aspects by multi-level analyses of data from several free-air CO2 enrichment experiments conducted in five different countries. There was little effect of elevated CO2 on yield (except in the USA), likely due to photosynthetic capacity acclimation, as reflected by protein profiles. In addition, there was a significant decrease in leaf amino acids (threonine) and macroelements (e.g. K) at elevated CO2, while other elements, such as Mg or S, increased. Despite the non-significant effect of CO2 enrichment on yield, grains appeared to be significantly depleted in N (as expected), but also in threonine, the S-containing amino acid methionine, and Mg. Overall, our results suggest a strong detrimental effect of CO2 enrichment on nutrient availability and remobilization from leaves to grains.
  • PublicationOpen Access
    Physiological performance of transplastomic tobacco plants overexpressing aquaporin AQP1 in chloroplast membranes
    (Oxford University Press, 2018) Fernández San Millán, Alicia; Aranjuelo Michelena, Iker; Ancín Rípodas, María; Larraya Reta, Luis María; Farrán Blanch, Inmaculada; Veramendi Charola, Jon; Agronomia, Bioteknologia eta Elikadura; Agronomía, Biotecnología y Alimentación; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua
    The leaf mesophyll CO2 conductance and the concentration of CO2 within the chloroplast are major factors affecting photosynthetic performance. Previous studies have shown that the aquaporin NtAQP1 (which localizes to the plasma membrane and chloroplast inner envelope membrane) is involved in CO2 permeability in the chloroplast. Levels of NtAQP1 in plants genetically engineered to overexpress the protein correlated positively with leaf mesophyll CO2 conductance and photosynthetic rate. In these studies, the nuclear transformation method used led to changes in NtAQP1 levels in the plasma membrane and the chloroplast inner envelope membrane. In the present work, NtAQP1 levels were increased up to 16-fold in the chloroplast membranes alone by the overexpression of NtAQP1 from the plastid genome. Despite the high NtAQP1 levels achieved, transplastomic plants showed lower photosynthetic rates than wild-type plants. This result was associated with lower Rubisco maximum carboxylation rate and ribulose 1,5-bisphosphate regeneration. Transplastomic plants showed reduced mesophyll CO2 conductance but no changes in chloroplast CO2 concentration. The absence of differences in chloroplast CO2 concentration was associated with the lower CO2 fixation activity of the transplastomic plants. These findings suggest that non-functional pores of recombinant NtAQP1 may be produced in the chloroplast inner envelope membrane.