Publication:
Post-harvest light treatment increases expression levels of recombinant proteins in transformed plastids of potato tubers

Date

2015

Director

Publisher

Wiley
Acceso abierto / Sarbide irekia
Artículo / Artikulua
Versión aceptada / Onetsi den bertsioa

Project identifier

Abstract

Plastid genetic engineering represents an attractive system for the production of foreign proteins in plants. Although high expression levels can be achieved in leaf chloroplasts, the results for non-photosynthetic plastids are generally discouraging, mainly due to low transcriptional and translational rates in comparison with chloroplasts. Here, we report the expression of two thioredoxin genes (trx f and m) from the potato plastid genome to study transgene expression in amyloplasts. As expected, the highest transgene expression was detected in the leaf (up to 4.2% of TSP). The Trx protein content in the tuber was approximately 2-3 orders of magnitude lower than in the leaf. However, we demonstrate that a simple post-harvest light treatment of microtubers developed in vitro or soil-grown tubers induces up to 55 times higher accumulation of the recombinant protein in just 7-10 days. The promoter and 5’-UTR of the psbA gene displayed higher light induction than the rrn promoter. After the applied treatment, the Trx f levels in microtubers and soil-grown tubers increased to 0.14% and 0.11% of TSP, respectively. Moreover, tubers stored for 8 months maintained the capacity of increasing the foreign protein levels after the light treatment. Post-harvest cold induction (up to 5 times) at 4 ºC was also detected in microtubers. We conclude that plastid transformation and post-harvest light treatment could be an interesting approach for the production of foreign proteins in potato.

Description

Keywords

Amyloplast, Microtuber, Plastid transformation, Potato, Thioredoxin

Department

IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua

Faculty/School

Degree

Doctorate program

item.page.cita

item.page.rights

© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.