Beruete Díaz, Miguel

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Beruete Díaz

First Name

Miguel

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 141
  • PublicationOpen Access
    Ultra-compact planoconcave zoned metallic lens based on the fishnet metamaterial
    (AIP Publishing, 2013) Pacheco-Peña, Víctor; Orazbayev, Bakhtiyar; Torres Landívar, Víctor; Beruete Díaz, Miguel; Navarro Cía, Miguel; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    A 1.5λ0 -thick planoconcave zoned lens based on the fishnet metamaterial is demonstrated experimentally at millimeter wavelengths. The zoning technique applied allows a volume reduction of 60% compared to a full fishnet metamaterial lens without any deterioration in performance. The structure is designed to exhibit an effective refractive index n = -0.25 at f = 56.7GHz (λ0 = 5.29 mm) with a focal length FL = 47.62 mm = 9λ0. The experimental enhancement achieved is 11.1dB, which is in good agreement with simulation and also with previous full fishnet metamaterial lenses and opens the door for integrated solutions.
  • PublicationOpen Access
    Compact dual-band terahertz quarter-wave plate metasurface
    (IEEE, 2014) Torres Landívar, Víctor; Etayo Salinas, David; Ortuño Molinero, Rubén; Navarro Cía, Miguel; Beruete Díaz, Miguel; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    A dual-band quarter-wave plate based on a modified extraordinary transmission hole array is numerically analyzed and experimentally demonstrated at terahertz frequencies. To control independently orthogonal polarizations, the original square holes are connected with vertical slits and their lateral straight sides are replaced by meander lines. This smart design enables dual-band operation with unprecedented fractional bandwidths in a compact structure. Considering a flattening deviation lower than 40% of the optimum value, a fractional bandwidth of 53.8% and 3.8% is theoretically obtained (16.8% and 2.9% in the experiment) at 1 and 2.2 THz, respectively. At these two frequencies, the structure is 0.13-λ and 0.29-λ thick, respectively. Given the compactness of the whole structure and the performance obtained, this quarter-wave plate is presented as a competitive device for the terahertz band.
  • PublicationOpen Access
    ε-near-zero (ENZ) graded index quasi-optical devices: steering and splitting millimeter waves
    (IOP Publishing, 2014) Pacheco-Peña, Víctor; Torres Landívar, Víctor; Beruete Díaz, Miguel; Navarro Cía, Miguel; Engheta, Nader; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Graded index ε near-zero (GRIN-ENZ) quasi-optical components such as beam steerers and power splitters are designed, simulated and analyzed. The GRIN-ENZ medium is realized using stacked narrow hollow waveguides whose infinite array shows the first transmission peak at 1.0002 THz. Several GRIN-ENZ beam steerers to channel a normal incident plane wave to different output angles (15, 45, 65 and 80 deg) with good impedance matching (low reflection) are analytically and numerically demonstrated using planar structures with a thickness of 5λ0 = 1500 μm along z-axis. Moreover, symmetrical and asymmetrical power splitters are designed with output angles (plus/minus 45 deg) and (-80, +35 deg), respectively.
  • PublicationOpen Access
    Low profile THz periodic leaky-wave antenna
    (IEEE, 2014) Beaskoetxea Gartzia, Unai; Beruete Díaz, Miguel; Rodríguez Ulibarri, Pablo; Etayo Salinas, David; Sorolla Ayza, Mario; Navarro Cía, Miguel; Zehar, Mokhtar; Blary, Karine; Chahadih, Abdallah; Han, Xiang-Lei; Akalin, Tahsin; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    In this work, a 0.566THz flat leaky-wave antenna, consisting of a central λ0/2 slot surrounded by straight parallel wedge corrugations, is numerically and experimentally analyzed. Simulations show a moderately high gain and no significant differences when compared with a typical square corrugation profile. Numerical comparison is also made for the designed and manufactured antennas. High transmission enhancement in the corrugated case is obtained, compared to that given by a single central slot with no grooves. This kind of antennas finds several applications in different frequency ranges, including the nowadays high-interest range of the THz.
  • PublicationOpen Access
    Fully metallic Luneburg metalens antenna in gap waveguide technology at V-band
    (IEEE, 2023) Pérez Quintana, Dayan; Bilitos, Christos; Ruiz-García, Jorge; Ederra Urzainqui, Íñigo; Teniente Vallinas, Jorge; González-Ovejero, David; Beruete Díaz, Miguel; Institute of Smart Cities - ISC
    This article presents the design of a flat Luneburg metalens antenna at V-band using gap waveguide (GW) technology. The metalens consists of a parallel plate waveguide (PPW) loaded with metallic pins whose height is modulated to get an effective refractive index that follows the Luneburg equation. A Groove GW (GGW) H-plane horn is used to illuminate the metalens, such that the rays are collimated and a planar wavefront is generated in the direction of propagation. Since the structure at hand is planar, it can be efficiently integrated on flat surfaces. Moreover, the fully metallic structure is mechanically robust and presents lower losses than lenses including dielectric substrates. A prototype has been fabricated and tested, simulations and experimental results are in very good agreement. The metalens yields an input reflection coefficient (S11) below −10 dB from 45 to 70 GHz, whereas the −3 dB gain fractional bandwidth is 26.2% with respect to a center frequency of 60 GHz, with a peak of 22.5 dB at 61 GHz. These features make this design an interesting solution for millimeter-wave (MMW) applications.
  • PublicationOpen Access
    THz tripod metasurfaces for sensing applications: from the basic, to more elaborated designs
    (IEEE, 2021) Jáuregui López, Irati; Orazbayev, Bakhtiyar; Pacheco-Peña, Víctor; Beruete Díaz, Miguel; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    In this work, we propose, design, and evaluate three types of : three types of metasurfaces using tripod-shaped unit cells when working as thin-film sensing devices. The three meta-atoms of the proposed metasensors area simple solid tripod, a hollow tripod, and a hollow tripod structure with arms.The best design showed a mean numerical sensitivity of 1.42 × 10−4nm for extremely thin samples, meaning an improvement of 381% with respect to the initial designs. These results highlight the importance of using metastructures with complex geometries that enable high-intensity electric field distributions over the whole metasurface.
  • PublicationOpen Access
    Negative refraction in a prism made of stacked subwavelength hole arrays
    (Optical Society of America, 2008) Navarro Cía, Miguel; Beruete Díaz, Miguel; Sorolla Ayza, Mario; Campillo, Igor; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    Metamaterial structures are artificial materials that show unconventional electromagnetic properties such as negative refraction index, perfect lenses, and invisibility. However, losses are one of the big challenges to be surpassed in order to design practical devices at optical wavelengths. Here we report negative refraction in a prism engineered by stacked sub-wavelength hole arrays. These structures exhibit inherently an extraordinary optical transmission which could offer a solution to the problem of losses at optical wavelengths. It is shown the possibility to obtain negative indices of refraction starting from near to zero values. Our work demonstrates by a direct experiment the feasibility of engineering negative refraction by just drilling sub-wavelength holes in metallic plates and stacking them.
  • PublicationOpen Access
    All-metallic ε-near-zero (ENZ) lens based on ultra-narrow hollow rectangular waveguides: experimental results
    (IEEE, 2014) Orazbayev, Bakhtiyar; Torres Landívar, Víctor; Pacheco-Peña, Víctor; Falcone Lanas, Francisco; Teniente Vallinas, Jorge; Beruete Díaz, Miguel; Sorolla Ayza, Mario; Navarro Cía, Miguel; Engheta, Nader; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Here we perform numerical and experimental investigation of plano-concave all-metallic ε-near-zero (ENZ) lens with operational frequency f = 144 GHz. The ENZ lens is achieved by stacking an array of narrow hollow rectangular waveguides working near cut-off frequency. Focusing and radiation properties are numerically analyzed and measured. The enhancement of 5.61 dB and directivity of 17.6 dBi are shown. Good agreement between experimental and numerical results is demonstrated.
  • PublicationOpen Access
    Compact antennas in ridge gap waveguide with circular polarization
    (IEEE, 2020) Pérez Quintana, Dayan; Ederra Urzainqui, Íñigo; Beruete Díaz, Miguel; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    In this paper, two compact antennas in Ridge Gap Waveguide (RGW) technology, working at 60 GHz, with a high-purity circular polarization (CP) within a broad bandwidth are manufactured and measured. The antennas are fed from the bottom plane with a WR-15 waveguide (V-band), which couples the wave to the RGW. CP is generated in a simple and effective way, by means of two orthogonal feeder arms that excite a CP in a diamond-shaped slot on top. A broadband matching with reflection coefficient magnitude below -10 dB (S-11 < -10 dB) is achieved from approximately 60.3 to 69.6 GHz (> 9 GHz). Applying the axial ratio criterion (AR < 3dB) the bandwidth in CP is 14.48%, with respect to the central frequency (59 to 70 GHz). The maximum gain in both designs is obtained at 67 GHz, with a value of 5.49 and 11.12 dB respectively.
  • PublicationOpen Access
    Soret fishnet metalens antenna
    (Springer Nature, 2015) Orazbayev, Bakhtiyar; Beruete Díaz, Miguel; Pacheco-Peña, Víctor; Crespo López, Gonzalo; Teniente Vallinas, Jorge; Navarro Cía, Miguel; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    At the expense of frequency narrowing, binary amplitude-only diffractive optical elements emulate refractive lenses without the need of large profiles. Unfortunately, they also present larger Fresnel reflection loss than conventional lenses. This is usually tackled by implementing unattractive cumbersome designs. Here we demonstrate that simplicity is not at odds with performance and we show how the fishnet metamaterial can improve the radiation pattern of a Soret lens. The building block of this advanced Soret lens is the fishnet metamaterial operating in the near-zero refractive index regime with one of the edge layers designed with alternating opaque and transparent concentric rings made of subwavelength holes. The hybrid Soret fishnet metalens retains all themeritsof classicalSoret lenses suchas lowprofile, lowcost andeaseofmanufacturing. It is designed for the W-band of themillimeter-waves range with a subwavelength focal lengthFL51.58 mm(0.5l0) aiming at a compact antenna or radar systems. The focal properties of the lens along with its radiation characteristics in a lens antenna configuration have been studied numerically and confirmed experimentally, showing a gain improvement of ,2 dB with respect to a fishnet Soret lens without the fishnet metamaterial.