Beruete Díaz, Miguel

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Beruete Díaz

First Name

Miguel

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 25
  • PublicationOpen Access
    A gap waveguide fed circular polarization antennas in the millimeter wave range
    (IEEE, 2020) Pérez Quintana, Dayan; Torres García, Alicia E.; Ederra Urzainqui, Íñigo; Beruete Díaz, Miguel; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    In this work, a novel circular polarization (CP) antennas in ridge gap waveguide (RGW) working in the V-band of the millimeter-wave spectrum is presented. CP is generated in a simple and effective way by means of two orthogonal feeder arms that excite a CP in a rotated square-shaped slot placed on top metallic lid. Parametric simulation studies demonstrate that a difference between both arms length of approximately λ/4 leads to high-purity CP within a relatively broad bandwidth. A square-shaped slot antenna is manufactured and experimentally analyzed. A broadband matching with a reflection coefficient magnitude below -10 dB (S11 <; -10 dB) is achieved from 60.5 to 69.3 GHz. Applying the axial ratio criterion (AR <; 3 dB) the bandwidth in CP is 10.74%, with respect to the central frequency. The maximum gain at broadside is 5.49 dB at 66.8 GHz.
  • PublicationOpen Access
    Wideband circularly-polarized gap waveguide-based antenna design
    (IEEE, 2025-03-12) Leoz-Beltrán, Iñigo; Iriarte Galarregui, Juan Carlos; Pérez Quintana, Dayan; Teberio Berdún, Fernando; Beruete Díaz, Miguel; Ederra Urzainqui, Íñigo; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza
    This paper presents the design of an all-metal antenna based on Gap Waveguide technology. The antenna, which is realized using a Ridge Gap Waveguide, consists of just two layers, maintaining a compact size. The first layer is made up of two perpendicularly placed arms, which comprise the feeding, and the second layer hosts a diamond shaped slot and a horn, which comprise the radiator. Simulations show that the design achieves a remarkable bandwidth equivalent to the 31.43% of the central frequency in terms of both S11 parameter, being below -10 dB, and Axial Ratio, being below 3 dB.
  • PublicationOpen Access
    Controlling the direction of propagation of surface plasmons via graded index effective dielectric media
    (IEEE, 2019) Pacheco-Peña, Víctor; Beruete Díaz, Miguel; Institute of Smart Cities - ISC
    In this work, we propose a mechanism to steer and tailor surface plasmon propagation by using graded index concepts. In this approach, a block of dielectric with fixed thickness is placed on top of a semi-infinite metal. The beam steerers are then designed by simply changing the height of the dielectric in the direction perpendicular to the propagation axis. The analytical design is presented and several structures are evaluated with the ability to steer the incoming surface plasmons at any desired output angle.
  • PublicationOpen Access
    Enhancing the infrared and visible emission properties of calcium silicate hydrate for radiative cooling using metamaterials
    (IEEE, 2022) Lezaun Capdevila, Carlos; Dolado, Jorge S.; Torres García, Alicia E.; Pérez Escudero, José Manuel; Liberal Olleta, Íñigo; Beruete Díaz, Miguel; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    Two periodic structures composed of metal cylinders with different orientations are used to improve the solar reflection of calcium silicate hydrate (CSH) while maintaining its atmospheric emission. Interesting effects have been found when the distance between bars is small, suggesting that lattice effects, arising from the interaction between the rods could be leveraged in the design of these metamaterials. The size of the metal bars is selected based on state of the art micro-manufacturing techniques. This study limits its scope to a CSH gel model; i.e. the most important component of cement-based materials. Further research will be undertaken to consider a best description of the dielectric function of concrete.
  • PublicationOpen Access
    Lithography-free perfect narrowband absorbers using simple layered structures
    (IEEE, 2024-10-08) Lezaun Capdevila, Carlos; Navajas Hernández, David; Liberal Olleta, Íñigo; Beruete Díaz, Miguel; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC
    Light absorbers are key components for multiple applications ranging from heat and energy management to communications and sensing. This work explores different complex permittivity combinations for material-reflector and material-spacer-reflector configurations, achieving perfect absorption under different permittivity regimes and thicknesses. Using silicon carbide, we discuss polarization and angle dependencies, and the potential of exploiting different permittivity regimes within a device for multi-band absorption. This work helps standardize absorber design and offer insights to engineer perfect absorbers for applications such as thermal emission, absorption, communication and sensing.
  • PublicationOpen Access
    Blind spot mitigation in phased array antenna using metamaterials
    (IEEE, 2014) Crépin, Thomas; Martel, Cédric; Gabard, Benjamin; Boust, Fabrice; Martinaud, Jean-Paul; Dousset, Thierry; Rodríguez Ulibarri, Pablo; Beruete Díaz, Miguel; Loecker, Claudius; Bertuch, Thomas; Marcotegui Iturmendi, José Antonio; Maci, Stefano; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    In this work, a metaradome based on a fakir’s bed of nails is designed and tested in order to suppress the blind directions of a 100-element antenna array. The antenna is a microstrip array designed to operate in X-band. The fakir’s bed metamaterial-like was first approximated using analytical formulas before a full-wave numerical optimization. Experimental results are exposed and confronted to numerical results. They show a significant reduction of the blind spot subsequent to the metaradome addition.
  • PublicationOpen Access
    Evolutionary algorithms applied to multi-layered radiative cooling metamaterials
    (IEEE, 2022) Lezaun Capdevila, Carlos; Jorajuria Gómez, Tania; Torres García, Alicia E.; Herrera, Pilar; Beruete Díaz, Miguel; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    A newly design method for designing multi-layered radiative cooling metamaterials based on genetic algorithms (GAs) is exposed. The developed GA has been tested in three cases, resulting in three different structures that achieve, theoretically under direct sunlight, a net cooling power of 39.96 W/m 2 , 57.78 W/m 2 and 61.77 W/m 2 . Such devices are composed of 9, 15 and 24 layers respectively with a total thickness of less than 4.8 µm in the worst case. By the nature of the method, fewer design experience in metamaterials is needed, as well as it is free-cost, due to the use of analytical calculations for the emissivity of the meta materials instead of a commercial generic electromagnetic solver. Automated design of radiative cooling multi-layered structures and other applications in the infrared range can be further developed with this work.
  • PublicationOpen Access
    Full-space metasurface at millimeter-wave frequencies
    (IEEE, 2023) Ruiz Fernández de Arcaya, María; Marzo Pérez, Asier; Beruete Díaz, Miguel; Institute of Smart Cities - ISC
    Conventional metasurfaces provide control over the electromagnetic waves in a single working frequency operating either in transmission or reflection. Full-Space Metasurfaces (FSM) are an extension that allows operation at two different frequencies with independent functionalities in transmission and reflection. This paper presents a gradient index FSM device based on a 3-layered unit cell where the phase modulation is implemented following the Pancharatman-Berry (PB) principle. The device is designed to operate at millimeter waves, with the lowest frequency operating in reflection and the highest one in transmission. To check the structure performance, a metasurface was designed to provide beam steering in reflection at 49.4 GHz and an amplitude image hologram in transmission at 104 GHz.
  • PublicationOpen Access
    Liquid crystals in reconfigurable reflectarray antennas for sub-millimeter waves
    (IEEE, 2024-08-21) Pérez Quintana, Dayan; Aguirre Gallego, Erik; Olariaga Jauregui, Eduardo; Kuznetsov, Sergei A.; Lapanik, Valeri I.; Sutormin, Vitaly S.; Zyryanov, Victor Ya; Marcotegui Iturmendi, José Antonio; Beruete Díaz, Miguel; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC
    Accelerated technological progress responds to the dynamic evolution of wireless communication systems, fueled by the advent of 5G, the emergence of 6G, and the pervasive integration of the IoT paradigm. Smart antennas play a pivotal role in this advancement, facilitating electronic beam steering to meet escalating demands for enhanced bandwidth and elevated operating frequencies. The spotlight shifts to reconfigurable reflectarray antennas, gaining prominence over conventional phased arrays. Notably, liquid crystals (LCs) emerge as a promising avenue for creating electronically reconfigurable/switchable reflectarrays, specifically tailored for short millimeter and terahertz waves. LCs, as a unique aggregate state combining solid and liquid features, address current technology limitations. Their uniaxial nature and the ability to manipulate molecule orientation enable effective fine-tuning of dielectric permittivity without drawbacks present in existing technologies.
  • PublicationOpen Access
    Hyperbolic lens antenna in groove gap waveguide technology at sub-millimeter waves
    (IEEE, 2022) Pérez Quintana, Dayan; Biurrun Quel, Carlos; Ederra Urzainqui, Íñigo; González-Ovejero, David; Beruete Díaz, Miguel; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    In this paper, a flat hyperbolic lens antenna using Groove Gap Waveguide (GGW) technology is designed at 300 GHz. A GGW horn antenna is used to feed the metamaterial lens placed in a parallel plate waveguide (PPW), in order to increase the directivity in the direction of propagation. The combination of both devices, the metalens and the GGW antenna, achieves excellent radiation performance.