Falcone Lanas, Francisco

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Falcone Lanas

First Name

Francisco

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 32
  • PublicationOpen Access
    An antenna array utilizing slotted conductive slab: inspired by metasurface and defected ground plane techniques for flexible electronics and sensors operating in the millimeter-wave and terahertz spectrum
    (Springer, 2023) Ali, Esraa Mousa; Alibakhshikenari, Mohammad; Virdee, Bal S.; Kouhalvandi, Lida; Livreri, Patrizia; Falcone Lanas, Francisco; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    This paper describes an innovative design of an antenna array that is metamaterial inspired using sub-wavelength slots and defected ground structure (DGS) for operation over millimeter-wave and terahertz (THz) spectrum. The proposed antenna array consists of a 2 × 4 array of conductive boxes on which are implemented rectangular slots. The presence of dielectric slots introduces resonant modes within the structure. These resonant modes result in enhancing the electromagnetic fields within the slots, which radiate energy into free space. The resonant frequencies and radiation patterns depend on the specific geometry of the slots and the dielectric properties. The antenna array is excited through a single microstrip line. The radiating elements in the array are interconnected to each other with a microstrip line. Unwanted mutual coupling between the radiating elements can degrade the performance of the antenna. This was mitigated by defecting the ground plane with rectangular slots. It is shown that this technique can enhance the array¿s reflection coefficient over a wider bandwidth. The array was constructed on polyimide substrate having dielectric constant of 3.5 and thickness of 20 ¿m. The design was modelled, and its performance verified using an industry standard electromagnetic package by CST Studio Suite. The proposed array antenna has dimensions of 20 × 10 mm2 and operates between 80 and 200 GHz for radiation gain better than 4 dBi and efficiency above 55%. The peak radiation gain and efficiency are 7.5 dBi and 75% at 91 GHz, respectively. The operational frequency range of the array corresponds to a fractional bandwidth of 85.71%.
  • PublicationOpen Access
    Multi antenna structure assisted by metasurface concept providing circular polarization for 5G millimeter wave applications
    (Nature, 2025-05-21) Althuwayb, Ayman Abdulhadi; Ali, Esraa Mousa; Alibakhshikenari, Mohammad; Virdee, Bal S.; Rashid, Nasr; Kaaniche, Khaled; Atitallah, Ahmed Ben; Elhamrawy, Osama I.; Falcone Lanas, Francisco; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC
    This paper presents a circularly polarized multi-antenna structure designed for 5G millimeter-wave applications. The structure is based on circular patch radiators, each enhanced with metasurface (MTS) characteristics through the integration of multi-split ring slots. Each radiating element is enclosed within a decoupling wall constructed from a microstrip transmission line, which features both wide (capacitive) and thin (inductive) impedance profiles. The antennas are excited from below using metallic pins, which connect to the radiators through via-holes stemming from coplanar waveguide ports on the ground plane. Experimental results demonstrate a wide bandwidth from 25.6 to 29.7 GHz, corresponding to a fractional bandwidth of 14.82%. Additionally, the antenna exhibits stable radiation patterns, with an average gain of 2.7 dBi and a radiation efficiency of 57%. Using a single radiator configuration, a 3 × 3 antenna array was implemented. In this design, electromagnetic coupling between adjacent radiators is significantly reduced. The resulting array, measuring 20 × 20 × 0.32 mm3, achieves excellent performance across a wide frequency range from 24 to 31 GHz, corresponding to a bandwidth of 25.45%. Key metrics include an average isolation between radiating elements exceeding 17 dB and an average gain and radiation efficiency of 9.0 dBi and 91.5%, respectively.
  • PublicationOpen Access
    Impedance bandwidth improvement of a planar antenna based on metamaterial-inspired T-matching network
    (IEEE, 2021) Alibakhshikenari, Mohammad; Virdee, Bal S.; Shukla, Panchamkumar; Wang, Yan; Azpilicueta Fernández de las Heras, Leyre; Naser Moghadasi, Mohammad; See, Chan H.; Elfergani, Issa; Zebiri, Chemseddine; Abd-Alhameed, Raed; Huynen, Isabelle; Rodriguez, Jonathan; Denidni, Tayeb A.; Falcone Lanas, Francisco; Limiti, Ernesto; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    In this paper a metamaterial-inspired T-matching network is directly imbedded inside the feedline of a microstrip antenna to realize optimum power transfer between the front-end of an RF Wireless transceiver and the antenna. The proposed T-matching network, which is composed of an arrangement of series capacitor, shunt inductor, series capacitor, exhibits left-handed metamaterial characteristics. The matching network is first theoretically modelled to gain insight of its limitations. It was then implemented directly in the 50-Ω feedline to a standard circular patch antenna, which is an unconventional methodology. The antenna’s performance was verified through measurements. With the proposed technique there is 2.7 dBi improvement in the antenna’s radiation gain and 12% increase in the efficiency at the center frequency,and this is achieved over a significantly wider frequency range by a factor of approximately twenty. Moreover, there is good correlation between the theoretical model, method of moments simulation, and the measurement results.
  • PublicationOpen Access
    Optimum power transfer in RF front end systems using adaptive impedance matching technique
    (Nature Research, 2021) Alibakhshikenari, Mohammad; Virdee, Bal S.; Azpilicueta Fernández de las Heras, Leyre; See, Chan H.; Abd-Alhameed, Raed; Althuwayb, Ayman Abdulhadi; Falcone Lanas, Francisco; Huynen, Isabelle; Denidni, Tayeb A.; Limiti, Ernesto; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    Matching the antenna’s impedance to the RF-front-end of a wireless communications system is challenging as the impedance varies with its surround environment. Autonomously matching the antenna to the RF-front-end is therefore essential to optimize power transfer and thereby maintain the antenna’s radiation efficiency. This paper presents a theoretical technique for automatically tuning an LC impedance matching network that compensates antenna mismatch presented to the RF-front-end. The proposed technique converges to a matching point without the need of complex mathematical modelling of the system comprising of non-linear control elements. Digital circuitry is used to implement the required matching circuit. Reliable convergence is achieved within the tuning range of the LC-network using control-loops that can independently control the LC impedance. An algorithm based on the proposed technique was used to verify its effectiveness with various antenna loads. Mismatch error of the technique is less than 0.2%. The technique enables speedy convergence (< 5 µs) and is highly accurate for autonomous adaptive antenna matching networks.
  • PublicationOpen Access
    Study on improvement of the performance parameters of a novel 0.41–0.47 THz on-chip antenna based on metasurface concept realized on 50 μm GaAs-layer
    (Nature Research, 2020) Alibakhshikenari, Mohammad; Virdee, Bal S.; See, Chan H.; Shukla, Panchamkumar; Falcone Lanas, Francisco; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    A feasibility study is presented on the performance parameters of a novel on-chip antenna based on metasurface technology at terahertz band. The proposed metasurface on-chip antenna is constructed on an electrically thin high-permittivity gallium arsenide (GaAs) substrate layer. Metasurface is implemented by engraving slot-lines on an array of 11 × 11 circular patches fabricated on the top layer of the GaAs substrate and metallic via-holes implemented in the central patch of each row constituting the array, which connects the patch to the leaky-wave open-ended feeding slot-lines running underneath the patches. The slot-lines are connected to each other with a slit. A waveguide port is used to excite the array via slot-lines that couple the electromagnetic energy to the patches. The metasurface on-chip antenna is shown to exhibit an average measured gain in excess of 10 dBi and radiation efficiency above 60% over a wide frequency range from 0.41 to 0.47 THz, which is significant development over other on-chip antenna techniques reported to date. Dimensions of the antenna are 8.6 × 8.6 × 0.0503 mm3. The results show that the proposed GaAs-based metasurface on-chip antenna is viable for applications in terahertz integrated circuits.
  • PublicationOpen Access
    Optical-microwave sensor for real-time measurement of water contamination in oil derivatives
    (Elsevier, 2023) Abdulsattar, Rusul K.; Alibakhshikenari, Mohammad; Virdee, Bal S.; Sharma, Richa; Elwi, Taha A.; Kouhalvandi, Lida; Hassain, Zaid Abdul; Ali, Syed Mansoor; Türker Tokan, Nurhan; Livreri, Patrizia; Falcone Lanas, Francisco; Limiti, Ernesto; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    This paper presents a novel microwave sensor using optical activation for measuring in real-time the water contamination in crude oil or its derivatives. The sensor is constructed from an end-coupled microstrip resonator that is interconnected to two pairs of identical fractal structures based on Moore curves. Electromagnetic (EM) interaction between the fractal curves is mitigated using a T-shaped microstrip-stub to enhance the performance of the sensor. The gap in one pair of fractal curves is loaded with light dependent resistors (LDR) and the other pair with microwave chip capacitors. The chip capacitors were used to increase the EM coupling between the fractal gaps to realize a high Q-factor resonator that determines the sensitivity of the sensor. Empirical results presented here show that the insertion-loss of the sensor is affected by the change in LDR impedance when illuminated by light. This property is used to determine the amount of water contaminated oil. The sensitivity of the sensor was optimized using commercial 3D EM solver. The measurements were made by placing a 30 mm diameter petri dish holding the sample on top of the sensor. The petri dish was filled up to a height of 10 mm with the sample of water contaminated crude oil, and the measurements were done in the range between 0.76 GHz and 1.2 GHz. The Q-factor of the oil sample with no water contamination was 70 and the Q-factor declined to 20 for 100% contamination. The error in the measurements was less than 0.024%. The sensor has dimensions of 0.127λo × 0.127λo × 0.004 λo and represents a new modality. Compared to existing techniques, the proposed sensor is simple to use, readily portable and is more sensitive.
  • PublicationOpen Access
    A comprehensive survey of 'metamaterial transmission-line based antennas: design, challenges, and applications'
    (IEEE, 2020) Alibakhshikenari, Mohammad; Virdee, Bal S.; Azpilicueta Fernández de las Heras, Leyre; Naser Moghadasi, Mohammad; Falcone Lanas, Francisco; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    In this review paper, a comprehensive study on the concept, theory, and applications of composite right/left-handed transmission lines (CRLH-TLs) by considering their use in antenna system designs have been provided. It is shown that CRLH-TLs with negative permittivity (< 0) and negative permeability (μ < 0) have unique properties that do not occur naturally. Therefore, they are referred to as artificial structures called 'metamaterials'. These artificial structures include series left-handed (LH) capacitances (CL), shunt LH inductances (LL), series right-handed (RH) inductances (LR), and shunt RH capacitances (CR) that are realized by slots or interdigital capacitors, stubs or via-holes, unwanted current flowing on the surface, and gap distance between the surface and ground-plane, respectively. In the most cases, it is also shown that structures based on CRLH metamaterial-TLs are superior than their conventional alternatives, since they have smaller dimensions, lower-profile, wider bandwidth, better radiation patterns, higher gain and efficiency, which make them easier and more cost-effective to manufacture and mass produce. Hence, a broad range of metamaterial-based design possibilities are introduced to highlight the improvement of the performance parameters that are rare and not often discussed in available literature. Therefore, this survey provides a wide overview of key early-stage concepts of metematerial-based designs as a thorough reference for specialist antennas and microwave circuits designers. To analyze the critical features of metamaterial theory and concept, several examples are used. Comparisons on the basis of physical size, bandwidth, materials, gain, efficiency, and radiation patterns are made for all the examples that are based on CRLH metamaterial-TLs. As revealed in all the metematerial design examples, foot-print area decrement is an important issue of study that have a strong impact for the enlargement of the next generation wireless communication systems.
  • PublicationOpen Access
    A novel 0.3-0.31 THz GaAs-based transceiver with on-chip slotted metamaterial antenna based on SIW technology
    (IEEE, 2020) Alibakhshikenari, Mohammad; Virdee, Bal S.; See, Chan H.; Abd-Alhameed, Raed; Falcone Lanas, Francisco; Limiti, Ernesto; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    This paper presents a novel on-chip antenna with fully integrated 0.3-0.31 THz transceiver is implemented on 0.5μm GaAs substrate, and comprises a voltage-controlled oscillator (VCO), a buffer amplifier, a modulator stage, a power-amplifier, a frequency-tripler, and an on-chip antenna. The proposed on-chip antenna design is based on metamaterial (MTM) slots and substrate integrated waveguide (SIW) technologies. The SIW antenna operates as a high-pass filter and an on-chip radiator to suppress the unwanted harmonics and radiate the desired signal, respectively. Dimensions of the on-chip antenna are 2×1×0.0006 mm3. The proposed on-chip antenna has an average radiation gain and efficiency of >1.0 dBi and 55%, respectively. The transceiver provides an average output power of-15 dBm over 0.3-0.31 THz, which is suitable for near-field active imaging applications at terahertz region.
  • PublicationOpen Access
    A comprehensive survey on "Various decoupling mechanisms with focus on metamaterial and metasurface principles applicable to SAR and MIMO antenna systems"
    (IEEE, 2020) Alibakhshikenari, Mohammad; Babaeian, Fatemeh; Virdee, Bal S.; Aïssa, Sonia; Azpilicueta Fernández de las Heras, Leyre; See, Chan H.; Falcone Lanas, Francisco; Althuwayb, Ayman Abdulhadi; Huynen, Isabelle; Abd-Alhameed, Raed; Limiti, Ernesto; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    Nowadays synthetic aperture radar (SAR) and multiple-input-multiple-output (MIMO) antenna systems with the capability to radiate waves in more than one pattern and polarization are playing a key role in modern telecommunication and radar systems. This is possible with the use of antenna arrays as they offer advantages of high gain and beamforming capability, which can be utilized for controlling radiation pattern for electromagnetic (EM) interference immunity in wireless systems. However, with the growing demand for compact array antennas, the physical footprint of the arrays needs to be smaller and the consequent of this is severe degradation in the performance of the array resulting from strong mutual-coupling and crosstalk effects between adjacent radiating elements. This review presents a detailed systematic and theoretical study of various mutual-coupling suppression (decoupling) techniques with a strong focus on metamaterial (MTM) and metasurface (MTS) approaches. While the performance of systems employing antenna arrays can be enhanced by calibrating out the interferences digitally, however it is more ef cient to apply decoupling techniques at the antenna itself. Previously various simple and cost-effective approaches have been demonstrated to effectively suppress unwanted mutual-coupling in arrays. Such techniques include the use of defected ground structure (DGS), parasitic or slot element, dielectric resonator antenna (DRA), complementary split-ring resonators (CSRR), decoupling networks, P.I.N or varactor diodes, electromagnetic bandgap (EBG) structures, etc. In this review, it is shown that the mutual-coupling reduction methods inspired by MTM and MTS concepts can provide a higher level of isolation between neighbouring radiating elements using easily realizable and cost-effective decoupling con gurations that have negligible consequence on the array's characteristics such as bandwidth, gain and radiation ef ciency, and physical footprint.
  • PublicationOpen Access
    Dual-polarized highly folded bowtie antenna with slotted self-grounded structure for sub-6 GHz 5G applications
    (IEEE, 2021) Alibakhshikenari, Mohammad; Virdee, Bal S.; See, Chan H.; Shukla, Panchamkumar; Mansouri Moghaddam, Sadegh; Zaman, Ashraf Uz; Shafqaat, Samia; Akinsolu, Mobayode O.; Liu, Bo; Yang, Jian; Abd-Alhameed, Raed; Falcone Lanas, Francisco; Limiti, Ernesto; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    In this paper, a novel dual-polarized highly-folded self-grounded Bowtie antenna that is excited through I-shaped slots is proposed for applications in sub-6GHz 5G multiple-input-multiple-output (MIMO) antenna systems. The antenna consists of two pairs of folded radiation petals whose base is embedded in a double layer of FR-4 substrate with a common ground-plane which is sandwiched between the two substrate layers. The ground-plane is defected with two I-shaped slots located under the radiation elements. Each pair of radiation elements are excited through a microstrip line on the top layer with RF signal that is 180° out of phase with respect to each other. The RF signal is coupled to the pair of feedlines on the top layer through the I-shaped slots from the two microstrip feedlines on the underside of the second substrate. The proposed feed mechanism gets rid of the otherwise bulky balun. The Bowtie antenna is a compact solution with dimensions of 32 32 33.8 mm3. Measured results have verified that the antenna operates over a frequency range of 3.1-5Ghz and exhibits an average gain and antenna efficiency in the vertical and horizontal polarizations of 7.5 dBi and 82.6%, respectively.