Publication:
A comprehensive survey on "Various decoupling mechanisms with focus on metamaterial and metasurface principles applicable to SAR and MIMO antenna systems"

Date

2020

Authors

Alibakhshikenari, Mohammad
Babaeian, Fatemeh
Virdee, Bal S.
Aïssa, Sonia
See, Chan H.
Althuwayb, Ayman Abdulhadi
Huynen, Isabelle
Abd-Alhameed, Raed

Director

Publisher

IEEE
Acceso abierto / Sarbide irekia
Artículo / Artikulua
Versión publicada / Argitaratu den bertsioa

Project identifier

European Commission/Horizon 2020 Framework Programme/722424openaire
AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-095499-B-C31/ES/recolecta

Abstract

Nowadays synthetic aperture radar (SAR) and multiple-input-multiple-output (MIMO) antenna systems with the capability to radiate waves in more than one pattern and polarization are playing a key role in modern telecommunication and radar systems. This is possible with the use of antenna arrays as they offer advantages of high gain and beamforming capability, which can be utilized for controlling radiation pattern for electromagnetic (EM) interference immunity in wireless systems. However, with the growing demand for compact array antennas, the physical footprint of the arrays needs to be smaller and the consequent of this is severe degradation in the performance of the array resulting from strong mutual-coupling and crosstalk effects between adjacent radiating elements. This review presents a detailed systematic and theoretical study of various mutual-coupling suppression (decoupling) techniques with a strong focus on metamaterial (MTM) and metasurface (MTS) approaches. While the performance of systems employing antenna arrays can be enhanced by calibrating out the interferences digitally, however it is more ef cient to apply decoupling techniques at the antenna itself. Previously various simple and cost-effective approaches have been demonstrated to effectively suppress unwanted mutual-coupling in arrays. Such techniques include the use of defected ground structure (DGS), parasitic or slot element, dielectric resonator antenna (DRA), complementary split-ring resonators (CSRR), decoupling networks, P.I.N or varactor diodes, electromagnetic bandgap (EBG) structures, etc. In this review, it is shown that the mutual-coupling reduction methods inspired by MTM and MTS concepts can provide a higher level of isolation between neighbouring radiating elements using easily realizable and cost-effective decoupling con gurations that have negligible consequence on the array's characteristics such as bandwidth, gain and radiation ef ciency, and physical footprint.

Description

Keywords

Decoupling methods, Metamaterial (MTM), Metasurface (MTS), Multiple-input-multiple-output (MIMO), Synthetic aperture radar (SAR), Isolation enhancement, Array antennas

Department

Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren / Institute of Smart Cities - ISC / Ingeniería Eléctrica, Electrónica y de Comunicación

Faculty/School

Degree

Doctorate program

item.page.cita

M. Alibakhshikenari et al., 'A Comprehensive Survey on Various Decoupling Mechanisms With Focus on Metamaterial and Metasurface Principles Applicable to SAR and MIMO Antenna Systems', in IEEE Access, vol. 8, pp. 192965-193004, 2020, doi: 10.1109/ACCESS.2020.3032826.

item.page.rights

This work is licensed under a Creative Commons Attribution 4.0 License.

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.