Urrutia Azcona, Aitor
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Urrutia Azcona
First Name
Aitor
person.page.departamento
Ingeniería Eléctrica, Electrónica y de Comunicación
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
7 results
Search Results
Now showing 1 - 7 of 7
Publication Open Access Application of active methodologies based on real cases - university-industry collaboration(IEEE, 2024-08-01) Andueza Unanua, Ángel María; Urrutia Azcona, Aitor; Erro Betrán, María José; Ruiz Zamarreño, Carlos; Leandro González, Daniel; Elosúa Aguado, César; Socorro Leránoz, Abián Bentor; Goicoechea Fernández, Javier; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, PINNE2022-UPNADuring the last academic years, the industrial electronics specialties of the Industrial Engineering Bachelor's Degrees of the Public University of Navarra (UPNA) suffered a gradual loss of students. In order to reverse this trend, a teaching innovation project was designed based on the planned use of active learning methodologies in collaboration with Navarra's leading companies in industrial electronics. The project aims to enhance student learning by making teaching more engaging and practical, as well as boost the social visibility of electronics by improving the perception among students of this strategic industrial sector in the region of Navarra.Publication Open Access Polymer-functionalized fiber-optic optrode towards the monitoring of breathing parameters(Institute of Electrical and Electronics Engineers Inc., 2023) Álvarez-Jiménez, A.; Acha Morrás, Nerea de; Aginaga Etxamendi, Concepción Isabel; Urrutia Azcona, Aitor; Socorro Leránoz, Abián Bentor; Matías Maestro, Ignacio; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISCAn innovative application of lossy mode resonances (LMRs) is presented in this work, pursuing the detection of biomedical variables. In this case, the detection of pH and breathing signal events is shown by means of a reflective fiber-optic optrode consisting of a poly(allylamine chloride) / poly (acrylic acid) polymer matrix deposited on the tip of a 200-micron-core bare multimode optical fiber. The proposed sensor is capable of detecting pH values between 6.5 and 8.0 (saliva pH range) with quite stability and repeatability. Moreover, when monitoring the breathing signal, the proposed sensor presents quite good real time detection of the different events occurring during the inspiration-expiration cycle, different breathing rates and detecting apneas.Publication Open Access Lossy mode resonance sensors based on nanocoated multimode-coreless-multimode fibre(Elsevier, 2020) Vicente Gómara, Adrián; Santano Rivero, Desiree; Zubiate Orzanco, Pablo; Urrutia Azcona, Aitor; Del Villar, Ignacio; Ruiz Zamarreño, Carlos; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Gobierno de Navarra / Nafarroako Gobernua; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, PJUPNA26In this work it is proved the ability to obtain lossy mode resonances (LMRs) in the transmission spectrum with multimode-coreless-multimode fibre optic structure coated with tin oxide on the coreless segment. The devices were characterized as a function of the surrounding medium refractive index and sensitivities of 7346.93 nm/RIU and 708.57 nm/RIU were attained for the first and the second LMR respectively. As an application proof of this technology, one of the devices was biofunctionalized and used for detecting goat anti-mouse IgG in concentrations ranging from 1 to 40 mg/L, with a limit of detection of 0.6 mg/L. This proves the ability of this simple structure to be used for biological, chemical or environmental applications.Publication Open Access Digital escape room project: engaging electronics for university students(IEEE, 2024-08-01) Urrutia Azcona, Aitor; Ruete Ibarrola, Leyre; López Torres, Diego; Andueza Unanua, Ángel María; Elosúa Aguado, César; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, PINNE2022-UPNAThis work proposes the implementation of a project-based learning methodology for the practical part of digital electronics subjects in the first years of undergraduate studies. Through the project called Digital Escape Room, a series of challenges and exercises are developed in a modular way that the students must solve in order to create a final design in Quartus software and demonstrate it on an FPGA-based device. The implementation of this project has allowed us to see that the academic results and the satisfaction and motivation of the students have improved significantly compared to previous years.Publication Open Access Monitoring of water freeze-thaw cycle by means of an etched single-mode - multimode - single-mode fiber-optic refractometer(IEEE, 2023) Socorro Leránoz, Abián Bentor; Aginaga Etxamendi, Concepción Isabel; Díaz Lucas, Silvia; Urrutia Azcona, Aitor; Del Villar, Ignacio; Matías Maestro, Ignacio; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenAs an alternative to the different technologies that permit the detection of in-situ ice formation on different surfaces, this contribution proposes the design of an etched single-mode – multimode – single-mode (E-SMS) fiber-optic-based structure as a multimode interference refractometer. This sensor provides enhanced properties with respect to a basic SMS structure, including a higher sensitivity and periodical interferometry bands that can measure surrounding refractive indices with repeatability and robustness. Since ice and water refractive indices are sufficiently different, this structure has been used to detect the freezing - thawing process of water taking place inside a freezer between -20°C and +20°C. Also, this work intends to show a proof of concept of a simple technology that can be applied in different situations, such as in smart cities, avionics, structural health monitoring or even to avoid a cold chain breakage. Inside, novel developments to better understand the working operation of the E-SMS structure are shown, together with a study on how to correlate optical and thermal measurements from a refractive index point of view.Publication Open Access Fiber-based label-free D-dimer detection for early diagnosis of venous thromboembolism(SPIE, 2020) Zubiate Orzanco, Pablo; Urrutia Azcona, Aitor; Ruiz Zamarreño, Carlos; Fernández Irigoyen, Joaquín; Giannetti, Ambra; Baldini, Francesco; Díaz Lucas, Silvia; Matías Maestro, Ignacio; Arregui San Martín, Francisco Javier; Santamaría Martínez, Enrique; Del Villar, Ignacio; Chiavaioli, Francesco; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de ComunicaciónD-dimer is a useful diagnostic biomarker for deep vein thrombosis or pulmonary embolism, collectively referred to as venous thromboembolism (VTE). The ability to detect in real-time the amount of D-dimer with a fast and reliable method is a key step to anticipate the appearance of these diseases. The combination of fiber-optic-based platforms for biosensing with the nanotechnologies is opening up the chance for the development of in situ, portable, lightweight, versatile, reliable and high-performance optical sensing devices towards lab-on-fiber technology. The generation of lossy mode resonances (LMRs) by means of the deposition of nm-thick absorbing metal-oxide films on special geometric-modified fibers allows measuring precisely and accurately surface refractive index changes, which are due to the binding interaction between a biological recognition element and the analyte under investigation. This approach enhances the light-matter interaction in a strong way, thus turning out to be more sensitive compared to other optical technology platforms, such as fiber gratings or surface plasmon resonance. Here, the results of a highly specific and sensitive biosensor for the detection of D-dimer based on LMR in fiber-optics are presented by monitoring in real-time the shift of the LMR related to the biomolecule interactions thanks to a conventional wavelength-interrogation system and an ad-hoc developed microfluidics. A detection limit of 100 ng/mL, a value 5-fold below the clinical cutoff value, has been attained for D-dimer spiked in human serum. The comparison of the results achieved with proteomics-based methodologies, which allows for the identification of betaand gamma-chains of fibrinogen, demonstrates the ability of our platform to specifically (>90%) recognize D-dimer.Publication Open Access Advances in fiber optic DNA-based sensors: a review(IEEE, 2021) Santano Rivero, Desiree; Urrutia Azcona, Aitor; Ruiz Zamarreño, Carlos; Del Villar, Ignacio; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaDNA is becoming increasingly important in the domain of optical fiber sensors, either as a tool for biosensing, or as a target to detect. In this review the main contributions of the last years are presented both in the domain of wavelength and intensity based configurations. This review comprises the use of natural single strand DNA (ssDNA) sequences as receptors for the detection of ssDNA sequences through hybridization, synthetic nucleic acids receptors for detection of complementary ssDNA sequences, and sensors based on natural and synthetic ssDNA receptors used for the detection of non-DNA targets. Parameters such as sensitivity, detection range and limit of detection are analyzed and discussed in detail to the purpose of comparing the different technologies and knowing the future lines to follow in the domain of fiber optic DNA-based sensors.