Río Bocio, Carlos del

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Río Bocio

First Name

Carlos del

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 18
  • PublicationOpen Access
    Application of coherently radiating periodic structures for feeding subarrays in limited-scan arrays
    (IEEE, 2023) Juárez, Elizvan; Panduro, Marco A.; Covarrubias, David H.; Reyna, Alberto; Río Bocio, Carlos del; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza
    This paper presents a new design technique to improve the reduction of phase shifters using sub-arrays and CORPS (coherently radiating periodic structures) technology. The CORPS network generates the values of cophasal excitation with reduced input ports. These values feed an optimal sub-arrays structure. Furthermore, fixed and variable amplifiers allow a low SLL (side lobe level) by using a raised cosine amplitude distribution along sub-arrays inputs. The theoretical model of CORPS-Subarrays, numerical and experimental results of several design cases are presented. The proposed design achieves a ±14° scanning range with a higher reduction of phase shifters than other techniques presented previously in the state of art. This paper illustrates, as a contribution, the complete antenna system based on the fabrication of a prototype and experimental results to analyze the reduction capacity of phase shifters and scanning possibilities of the proposed methodology in antenna arrays. The experimental results of the BFN (beam-forming networks) prototype at 6 GHz for 11 antenna elements and 3 phase shifters are provided. The proposed design achieves a reduction of 72% of phased shifters with ±14° beam scanning and −15 dB of SLL.
  • PublicationOpen Access
    Photonic-assisted 2-D terahertz beam steering enabled by a LWA array monolithically integrated with a BFN
    (Optica, 2022) Haddad, Thomas; Biurrun Quel, Carlos; Lu, Peng; Tebart, Jonas; Sievert, Benedikt; Makhlouf, Sumer; Grzeslo, Marcel; Teniente Vallinas, Jorge; Río Bocio, Carlos del; Stöhr, Andreas; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    A novel photonic-assisted 2-D Terahertz beam steering chip using only two tuning elements is presented. The chip is based on an array of three leaky wave antennas (LWAs) with a monolithically integrated beamforming network (BFN) on a 50 µm-thick indium phosphide substrate. The THz beam angle in elevation (E-plane) is controlled via optical frequency tuning using a tunable dual-wavelength laser. An optical delay line is used for azimuth (H-plane) beam control. The simulated beam scanning range is 92° in elevation for a frequency sweep from 0.23 THz to 0.33 THz and 69.18° in azimuth for a time delay of 3.6 ps. For the frequency range from 0.26 THz to 0.32 THz, it is confirmed experimentally that the THz beam scans from −12° to +33°, which is in good agreement with the numerical simulations. The beam direction in azimuth scans with a total angle of 39° when applying a delay difference of 1.68 ps. A good agreement is found between theoretically predicted and experimentally determined THz beam angles with a maximum angle deviation below 5°. The experimental scanning angles are limited due to the mechanical constraints of the on-wafer probes, the on-chip integrated transition and the bandwidth of the THz receiver LNA. The mechanical limitation will be overcome when using a packaged chip.
  • PublicationOpen Access
    New coplanar waveguide based on the gap waveguide technology
    (IEEE, 2021) Biurrun Quel, Carlos; Teniente Vallinas, Jorge; Río Bocio, Carlos del; Institute of Smart Cities - ISC
    A new planar waveguide, coined Inverted coplanar gap waveguide is presented. The concept of gap waveguides and parallel plate suppression between perfect magnetic and a perfect electric conductors is applied to coplanar waveguides in order to create a low-dispersion, low-loss transmission line. The combination of an artificial magnetic conductor and channelized top cover allow the propagation of an even coplanar mode with a strong component propagating over the air while solving encapsulation matters without the use of metallic vias. The main theory behind this new concept is presented and supported by FEM simulations on a commercial software package.
  • PublicationOpen Access
    3-D-printed transmit-array antenna for broadband backhaul 5G links at V-band
    (IEEE, 2020) Matos, Sérgio A.; Teixeira, Jorge P.; Costa, Jorge R.; Fernandes, Carlos A.; Río Bocio, Carlos del; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    The low cost and compactness of transmit-array antennas (TAs) make them attractive for 5G backhaul links. However, the TA advantage is less obvious when considering the broadband operation requirement. Two main factors influence the bandwidth performance, namely: 1) the bandwidth of the unit cells, and 2) the number of 360° phase wrapping zones in the aperture, which are designed for a specific frequency. Herein, we overcome these limitations by using all-dielectric unit cells (inherently broadband) and by developing a general method to quantify and manage the intricate relation between antenna gain, bandwidth, and antenna height. Based on this framework we optimize, as an example, a TA design (focal distance, \boldsymbol{F} = \text{63 mm} and aperture diameter \boldsymbol{D} = \text{80 mm}) to comply with typical gain specification for 5G backhaul links (>30 dBi) in the WiGiG band (from 57 to 66 GHz). The feed is a dedicated compact horn (\text{8 }\times \text{5} \times \text{22 mm}^3) that provides a proper illumination of the aperture. Additive manufacturing is used to simplify the manufacturing process of the antenna. A very good agreement between simulations and experimental results is obtained, achieving good aperture efficiency for this type of antenna (42%), which rivals with existing solutions based on more expensive manufacturing techniques.
  • PublicationOpen Access
    Evaluating noise in passive beam forming networks for multibeam applications
    (Elsevier, 2023) Biurrun Quel, Carlos; Río Bocio, Carlos del; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    In this work, we identify that the analysis in terms of noise of multibeam passive beam forming networks requires a proper formulation, in order not to overestimate the noise generated by the network. We show that the inherent spatial diversity offered by this type of networks results in an improvement of the SNR, similar to the one obtained by digital architectures, with a penalty due to the insertion loss. To illustrate this phenomena, two generalized equivalent circuits are proposed are a numerical example is presented.
  • PublicationOpen Access
    Hexagonal CORPS-BFN to feed OLAF SAR instrument
    (IEEE, 2021) Biurrun Quel, Carlos; Iriarte Galarregui, Juan Carlos; Ederra Urzainqui, Íñigo; Río Bocio, Carlos del; Institute of Smart Cities - ISC
    The concept of Coherently Radiating Periodic Structures-based Beam Forming Networks is applied to feed OLAF (OverLapped SubArray Fed) antenna for SAR Instrument at L-Band. The proper feeding of this system requires the multiple beams to be highly overlapped, and that is generated by a CORPS-BFN using a new 4-port Gysel power combiner/divider implemented in a suspended stripline technology. The network provides high isolation between inputs/outputs, low insertion loss, great return loss and the desired ovelapping of the different beams.
  • PublicationOpen Access
    New hexagonal CORPS-BFN for multibeam antenna applications
    (IEEE, 2020) Biurrun Quel, Carlos; Montesano, Antonio; Ederra Urzainqui, Íñigo; Iriarte Galarregui, Juan Carlos; Río Bocio, Carlos del; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    This work presents a new topology of a Coherently Radiating Periodic Structure - Beam Forming Network (CORPS-BFN) and its application for multibeam systems. A unit cell, consisting of a transition from a coaxial input to an intersection of three strip-lines with an angular span of 120 degrees, is proposed and analysed. A periodical replication of the cell gives rise to a uniform layer, allowing a proper matching of the ports of the network. Stacked layers allow in-phase propagation and distribution of the energy through the structure, increasing the number of output ports with each layer.
  • PublicationOpen Access
    Noise in coherently radiating periodic structures beam forming networks
    (IEEE, 2022) Biurrun Quel, Carlos; Río Bocio, Carlos del; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    Following the noise wave theory, beam forming networks based on Coherently Radiating Periodic Structures (CORPS-BFN) are analysed and proven to be capable of enhancing the Signal to Noise Ratio of the system by analogically multiplexing the signal and noise contributions present at every input port. The geometry of the network determines the maximum enhancement achievable, which is demonstrated to be independent from insertion losses. These findings are supported by a mathematical approach, as well as with experimental data.
  • PublicationOpen Access
    Multi-channel feedarray reflector antenna based radar concept for HRWS SAR imaging
    (IEEE, 2021) Castillo, Javier del; Orgaz, Lara; García, Quiterio; Memeletzoglou, Nafsika; Toso, Giovanni; Imbembo, Ernesto; Biurrun Quel, Carlos; Río Bocio, Carlos del; Institute of Smart Cities - ISC
    Large deployable reflector based multi-channel antenna systems are a key component of next generation SAR missions as they allow implementing multi-beam imaging capabilities and provide an efficient way to overcome the classical SAR resolution-coverage trade-off, covering wide swaths with high azimuth resolution. The presented work shows the design of a multichannel L-band SAR system and antenna architecture based on different feeders concepts and capable to map 400 km ground swath with 5 meter spatial resolution in dual polarization. The paper describes a preliminary design and architecture of the SAR system and the antenna where different design aspects including beamforming concepts and feedarray implementation techniques have been identified and assessed in view of achieving the required SAR performances while reducing the overall complexity of the solution.
  • PublicationOpen Access
    Design and characterization of terahertz CORPS beam forming networks
    (Springer, 2023) Biurrun Quel, Carlos; Haddad, Thomas; Sievert, Benedikt; Kress, Robin; Weimann, Nils; Erni, Daniel; Rennings, Andreas; Stöhr, Andreas; Teniente Vallinas, Jorge; Río Bocio, Carlos del; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    This work reviews the design and applicability of beam-forming networks based on Coherently Radiating Periodic Structures (CORPS-BFN) at Terahertz (THz) frequency bands. These versatile networks offer two operation modes: a continuous beam steering – feeding an antenna array with a linearly progressive phase distribution – using a reduced number of phase controls; or a multi-beam operation, generating independent, overlapped beams. These networks are built upon the concatenation of power combiners/dividers (PCDs) with isolated outputs. The isolation is provided by monolithically integrated resistors, implemented with Ti/TiO thin films for the first time. In this work, a planar prototype of a (inputs/outputs) microstrip CORPS-BFN for operation in the WR3.4/WM-864 band (220–330 GHz) on a thin 50 m Indium Phosphide (InP) substrate is designed, fabricated, and characterized. The measured S-parameters show a reflection coefficient better than -15 dB and an insertion loss between 1.6 and 3.2 dB in the whole band. In addition, an isolation better than 20 dB between the input ports has been measured. An overall remarkable agreement is observed between the measurements and the simulations. Last, the applications, scalability and efficiency of this type of networks at the targeted band are discussed in detail.