Publication: Design and characterization of terahertz CORPS beam forming networks
Consultable a partir de
Date
Authors
Director
Publisher
Project identifier
AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-109984RB-C43/ES/
Abstract
This work reviews the design and applicability of beam-forming networks based on Coherently Radiating Periodic Structures (CORPS-BFN) at Terahertz (THz) frequency bands. These versatile networks offer two operation modes: a continuous beam steering – feeding an antenna array with a linearly progressive phase distribution – using a reduced number of phase controls; or a multi-beam operation, generating independent, overlapped beams. These networks are built upon the concatenation of power combiners/dividers (PCDs) with isolated outputs. The isolation is provided by monolithically integrated resistors, implemented with Ti/TiO thin films for the first time. In this work, a planar prototype of a (inputs/outputs) microstrip CORPS-BFN for operation in the WR3.4/WM-864 band (220–330 GHz) on a thin 50 m Indium Phosphide (InP) substrate is designed, fabricated, and characterized. The measured S-parameters show a reflection coefficient better than -15 dB and an insertion loss between 1.6 and 3.2 dB in the whole band. In addition, an isolation better than 20 dB between the input ports has been measured. An overall remarkable agreement is observed between the measurements and the simulations. Last, the applications, scalability and efficiency of this type of networks at the targeted band are discussed in detail.
Keywords
Department
Faculty/School
Degree
Doctorate program
Editor version
Funding entities
© The Author(s) 2023. This article is licensed under a Creative Commons Attribution 4.0 International License.
Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.