Santesteban García, Gonzaga

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Santesteban García

First Name

Gonzaga

person.page.departamento

Agronomía, Biotecnología y Alimentación

person.page.instituteName

IMAB. Research Institute for Multidisciplinary Applied Biology

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 50
  • PublicationOpen Access
    A water content continuous monitoring of grapevine xylem tissue using a portable low-power cost-effective FMCW radar
    (IEEE, 2019) Quemada Mayoral, Carlos; García González, Cebrián; Iriarte Galarregui, Juan Carlos; Marín Ederra, Diana; Gastón Beraza, Diego; Miranda Jiménez, Carlos; Gonzalo García, Ramón; Maestrojuán Biurrun, Itziar; Santesteban García, Gonzaga; Ederra Urzainqui, Íñigo; Agronomia, Bioteknologia eta Elikadura; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Agronomía, Biotecnología y Alimentación; Ingeniería Eléctrica, Electrónica y de Comunicación; Gobierno de Navarra / Nafarroako Gobernua, PI025 VITHZ; Gobierno de Navarra / Nafarroako Gobernua, 0011-1365-2016-000084 RAFF
    This paper presents the real-time monitoring of a grapevine’s water content that flows up through the xylem tissue by means of a frequency-modulated continuous-wave (FMCW) radar. The application of an optimization process, based on the super-resolution multiple signal classification (MUSIC) algorithm, has enabled the reduction of the bandwidth required to discern the xylem water content, and thus the operating frequency, achieving a depth resolution of at least 3 mm. This design advantage has resulted in a significant step forward towards a real life application, allowing the use of fully-integrated off-the-shelf components in order to implement a completely portable low-power cost-effective radar at 23.1 GHz with a 3.4 GHz bandwidth. The sensor performance has been evaluated by means of three different experiments: irrigation cycles, day/night cycles and comparison between irrigation cycles at different temperatures. From the experimental results, it is possible to assert that the contactless sensor presented in this work is very sensitive to changes in the plant’s water content, differentiating between daytime and nighttime. In addition, it has been proved that temperature has a noticeable influence over the evapotranspiration, observing negative drying slopes of 5.62 mV/cycle and 6.28 mV/cycle at 23ºC and 26ºC respectively.
  • PublicationOpen Access
    Conventional and newly bred rootstock effects on the ecophysiological response of Vitis vinifera L. cv. Tempranillo
    (Elsevier, 2023) Buesa, Ignacio; Torres Molina, Nazareth; Tortosa, Ignacio; Marín Ederra, Diana; Villa Llop, Ana; Douthe, Cyril; Santesteban García, Gonzaga; Medrano, H.; Escalona, José M.; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura; Institute for Multidisciplinary Research in Applied Biology - IMAB
    Achieving more environmentally sustainable vineyards, particularly regarding efficient water use, is paramount in semi-arid grape-growing regions. Rootstocks may be a possible strategy to address these challenges, but require a comprehensive evaluation of their effect on the scion, including ecophysiological traits. The objectives of this study were 1) to characterize the physiological response of Tempranillo cultivar grafted onto five commercial (1103 P, 110 R, 140Ru, 420 A, and SO4), and seven recently bred (RG2, RG3, RG4, RG6, RG7, RG8 and RG9) rootstocks and 2) to elucidate the relationships between agronomic and physiological traits conferred by grapevine rootstocks. This was carried out over three seasons (2018–2020) in a typical Mediterranean vineyard by determining water relations, leaf gas exchange, carbon isotope ratios and vegetative development and yield components. The results highlighted the different behaviour of ‘Tempranillo’ vines due to the rootstock effects on vine water status, photosynthetic performance, hydraulic conductance, vegetative growth and yield parameters. Overall, rootstocks inducing vigour and yield in the scion, such as 140Ru and RG8, showed higher leaf gas exchange rates and hydraulic conductance at the whole-plant level due to less negative water potentials, suggesting a higher water uptake and transport capacity than RG2, RG7 and RG9. The RG rootstocks showed a very wide range of ecophysiological responses, but only RG8 outperformed compared to the most widely used commercial rootstocks. Moreover, this response was modulated by the season and the block soil type, suggesting the importance of rootstock selection according to the edaphoclimatic conditions. Therefore, this study highlights the high potential of rootstocks to adapt to water scarcity by improving crop water productivity in vineyards and provides physiological insights for future studies and breeding programmes.
  • PublicationEmbargo
    Upgrading and validating a soil water balance model to predict stem water potential in vineyards
    (Elsevier, 2024-12-15) Mirás-Ávalos, José M.; Escalona, José M.; Pérez-Álvarez, Eva Pilar; Romero Azorín, Pascual; Botia, Pablo; Navarro, Josefa; Torres Molina, Nazareth; Santesteban García, Gonzaga; Uriarte, David; Intrigliolo, Diego S.; Buesa, Ignacio; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura; Institute for Multidisciplinary Research in Applied Biology - IMAB
    Efficient water management is pivotal for viticulture sustainability. Decision support tools can advise on how to optimize irrigation or on the feasibility of growing grapes in rainfed conditions, but reliable algorithms for assessing vine water status are required. In this context, the aim of the current study was to upgrade a soil water balance model specific for vineyards by incorporating meteorological, soil and vine vigor in equations that transform the fraction of transpirable soil water into midday stem water potential (Ψstem). The model's sensitivity to variations in the magnitude of input parameters was analyzed. Furthermore, the model was tested in a broad scope of Spanish vineyards with different grapevine cultivars (both red and white), rootstocks, plant age, soil and climatic conditions, and water regimes, totaling 129 scenarios. The model was only slightly sensitive to variations in the magnitude of most inputs, except for the fraction of transpirable water at which leaf stomatal conductance begin to decline. Moreover, the model satisfactorily reproduced the evolution of Ψstem over the growing season, although it slightly overestimated the measured ¿stem values, as the slopes of the fitted regression lines were lesser than 1 on most occasions, 76 out of 129. Nonetheless, the coefficients of determination for these relationships were greater than 0.9, except for 21 datasets. Mean errors averaged 0.024 ± 0.015 MPa, while root mean square errors averaged 0.27 ± 0.01 MPa. The index of agreement was greater than 0.75 in 51 datasets, with only three datasets showing an index of agreement lower than 0.5. Nevertheless, the deviations between observed and simulated Ψstem values did not alter the classification of the water stress undergone by grapevines. This upgraded model could constitute the core of a decision support system for water management in vineyards, applicable to both rainfed and irrigated conditions.
  • PublicationOpen Access
    Under-vine cover crops: Impact on physical and biological soil proprieties in an irrigated Mediterranean vineyard
    (Elsevier, 2023) Abad Zamora, Francisco Javier; Marín Ederra, Diana; Imbert Rodríguez, Bosco; Virto Quecedo, Íñigo; Garbisu Crespo, Carlos; Santesteban García, Gonzaga; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura; Ciencias; Zientziak; Gobierno de Navarra / Nafarroako Gobernua, 0011-1383-2022-000000
    We present a novel approach to harmonic disturbance removal in single-channel wind turbine acceleration data by means of time-variant signal modeling. Harmonics are conceived as a set of quasi-stationary sinusoids whose instantaneous amplitude and phase vary slowly and continuously in a short-time analysis frame. These non-stationarities in the harmonics are modeled by low-degree time polynomials whose coefficients capture the instantaneous dynamics of the corresponding waveforms. The model is linear-in-parameters and is straightforwardly estimated by the linear least-squares algorithm. Estimates from contiguous analysis frames are further combined in the overlap-add fashion in order to yield overall harmonic disturbance waveform and its removal from the data. The algorithm performance analysis, in terms of input parameter sensitivity and comparison against three state-of-the-art methods, has been carried out with synthetic signals. Further model validation has been accomplished through real-world signals and stabilization diagrams, which are a standard tool for determining modal parameters in many timedomain modal identification algorithms. The results show that the proposed method exhibits a robust performance particularly when only the average rotational speed is known, as is often the case for stand-alone sensors which typically carry out data pre-processing for structural health monitoring. Moreover, for real-world analysis scenarios, we show that the proposed method delivers consistent vibration mode parameter estimates, which can straightforwardly be used for structural health monitoring.
  • PublicationOpen Access
    Assessing the causes of the low productivity of cider apple orchards in the Spanish region of Gipuzkoa
    (ISHS, 2022) Miranda Jiménez, Carlos; Crespo Martínez, Sara; Oneka Mugica, Oihane; Laquidain Imirizaldu, María Jesús; Urrestarazu Vidart, Jorge; Santesteban García, Gonzaga; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura
    Apple cider-making has a long tradition in many northern Spanish regions, such as Gipuzkoa in the Basque Country. The production in this region is largely based on traditional local cider cultivars for which very little information is available on their pollination requirements, resulting in a generalized low productivity of the orchards. In this work the self-(in)compatibility, S-alleles and pollen quality have been studied for the main cider varieties grown in Gipuzkoa, which represent a wide genetic diversity. The S-RNase genotype of 25 cultivars is firstly reported here, which allows allocating the cultivars in their corresponding incompatibility group. All the S-alleles have been previously described, being S26, S3 and S5 the most frequently found. Regarding pollen quality triploid cultivars, as expected, showed lower viability (<70%) and germination rates (<20%). Whereas most diploid cultivars showed good pollen viability (>80%) and germination (>30%) rates, it is noteworthy the low performance of ‘Urtebete’, very similar to that of triploids. Self-compatibility tests both in vitro and in situ showed low rates of fruit set and, together with an upper position of the stigmas related to stamens, reveal a low degree of self-compatibility for most cultivars. Surprisingly, two cultivars called ‘Moko’ and ‘Txalaka’, showed certain selfcompatibility with around 7% fruit set. All in all, the results will enable to improve traditional varieties orchard design as well as the profitability of apple cider farms in the region.
  • PublicationOpen Access
    Alfalfa yield estimation using the combination of Sentinel-2 and meteorological data
    (Elsevier, 2025-03-19) Gámez Guzmán, Angie Lorena; Segarra, Joel; Vatter, Thomas; Santesteban García, Gonzaga; Araus, José Luis; Aranjuelo Michelena, Iker; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura; Institute for Multidisciplinary Research in Applied Biology - IMAB; Gobierno de Navarra / Nafarroako Gobernua
    Context: Alfalfa (Medicago sativa L.) is one of the world's most important forages for livestock feeding. Timely yield estimates could provide information to guide management decisions to improve production. Since alfalfa crops typically undergo multiple harvests in a year and demonstrate rapid regrowth, satellite remote sensing techniques present a promising solution for alfalfa monitoring. Objective: To generate alfalfa yield estimation models at three phenological stages (early vegetative, late vegetative, and budding stages) using vegetation indices (VIs) derived from satellite Sentinel-2 images and their combination with meteorological data. Methods: We analyzed fields located in Navarre (northern Spain) over two consecutive seasons (2020 and 2021). To generate the yield estimation models, we applied a conventional multilinear regression and two machine learning algorithms (Least Absolute Shrinkage and Selection Operator - LASSO and Random Forest - RF). Results: Regardless of the statistical approach, the three phenological stages were not optimal when either VIs or meteorological data were used singularly as the predictor. However, the combination of VIs and meteorological data significantly improved the yield estimations, and in the case of LASSO model reached percentages of variance explained (R2) and normalized root mean square error (nRMSE) of R2= 0.61, nRMSE= 0.16 at the budding stage, but RF reached a R2= 0.44, nRMSE= 0.22 at the late vegetative stage, and R2= 0.36, nRMSE= 0.24 at the early vegetative stage. The most suitable variables identified were the minimum temperature, accumulated precipitation, the renormalized difference vegetation index (RDVI) and the normalized difference water index (NDWI). The RF model achieved more accurate yield estimations in early and late vegetative stages, but LASSO at bud stage. Conclusion: These models could be used for alfalfa yield estimations at the three phenological stages prior to harvest. The results provide an approach to remotely monitor alfalfa fields and can guide effective management strategies from the early development stages.
  • PublicationOpen Access
    Timing of defoliation affects anthocyanin and sugar decoupling in Grenache variety growing in warm seasons
    (Elsevier, 2024) Fernández-Zurbano, Purificación; Santesteban García, Gonzaga; Villa Llop, Ana; Loidi Erviti, Maite; Peñalosa, Carlos; Músquiz, Sergio; Torres Molina, Nazareth; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura; Institute for Multidisciplinary Research in Applied Biology - IMAB; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Warming trends over the winegrowing regions lead to an advance of grapevine phenology, decreased yield and increased sugar content with a lower polyphenol content. We hypothesized that different leaf removal timings may counteract these effects. A two-year experiment was conducted in La Rioja (Spain) with Vitis vinifera L. cv. Grenache trained in an open-vase system. Trial consisted in a complete block design with two leaf removal treatments differing in the moment of manipulation: i) severe leaf removal treatment conducted after fruit set (ELR); and ii) severe leaf removal at veraison (LLR) compared to an untreated control (Control). Both leaf removal treatments tended to decrease sugar content with no effect on yield, these effects being highly affected by the year. Defoliation accounted for a decreased flavanol and stilbene contents in berries at harvest. An ELR increased anthocyanin and phenolic acid contents at harvest, while warming during 2022 accounted for decreased contents of all the monitored groups of flavonols. ELR was only effective for delaying ripening by means of impairing the sugar:anthocyanin decoupling during the 2021 growing season which was related to lower % of kaempferol. Altogether, results suggested that defoliation should still be applied under currently warming trends in some viticulture regions.
  • PublicationOpen Access
    Structural and spatial shifts in the viticulture potential of main european wine regions as an effect of climate change
    (MDPI, 2024) Irimia, Liviu Mihai; Patriche, Cristian Valeriu; Petitjean, Théo; Tissot, Cyril; Santesteban García, Gonzaga; Neethling, Etienne; Foss, Chris; Le Roux, Renan; Quénol, Hervé; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura
    Climate change modifies the base climate of the wine regions and, with it, the structure of their traditional types of wine production, imposing measures to adapt, mitigate, or capitalize on the newly emerging conditions. In order to assess the impact of climate change and establish the appropriate adaptation measures for each wine region, regional and local studies are needed, which allow knowledge of their current climate profile. The aim of this research was to identify the changes that appeared as an effect of climate change in the initial climate profile and the initial structure of the traditional types of wine production of Bordeaux (France), Loire Valley (France), Rhine-Main-Nahe (Germany), La Rioja (Spain) and Cotnari (Romania) wine regions, and also in climate suitability for wine production of the Sussex area from the UK. The study uses multi-year averages for the 1951¿1990 and 1991¿2010 time periods of reference bioclimatic indices for viticulture, namely the Average Temperature of the Growing Season (AvGST), the Huglin Index (HI), and the Oenoclimatic Aptitude Index (IAOe). The results of this research reveal significant changes in climate suitability for wine production of the studied wine regions: in the Bordeaux wine region, climate change led to the appearance of conditions for the cultivation of the Mediterranean climate varieties Grenache, Syrah, and Carignan; in the cool climate wine regions Rhine-Main-Nahe and Cotnari, traditional producers of white wines, the climate has also become suitable for the cultivation of Pinot noir and Cabernet franc varieties, and implicitly for the production of red wines; in all studied wine regions, the classes of climate suitability for viticulture shifted higher in altitude, as is the case of the La Rioja region, where, in the recent period, the grapevine can be grown up to 922.9 m asl, higher by 206.2 m compared to the 1951¿1990 time period; in the low area of each wine region, one or even two new climate suitability classes for wine grape growing appeared. The shifts revealed by this research generate solid conclusions regarding the effect of climatic change on the viticultural potential of geographical areas, namely: in the context of climate change, the altitude of the wine region has a major influence on the evolution of the local viticulture potential; a higher topography allows a better adaptation of the wine region to climate change; low-elevation wine regions are more vulnerable to climate changes, especially the further south they are located; as an effect of climate change, conditions appear in the wine regions for the cultivation of new grapevine varieties and the production of new types of wine.
  • PublicationOpen Access
    fruclimadapt: an R package for climate adaptation assessment of temperate fruit species
    (Elsevier, 2021) Miranda Jiménez, Carlos; Urrestarazu Vidart, Jorge; Santesteban García, Gonzaga; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura
    Climate strongly determines the growing range of fruit plant species that can be grown successfully in an area, and also the cultivars that will perform best. Therefore, the assessment of the adequacy of a climate is critical for decision-making in the design of fruit orchards and vineyards, and also for the evaluation of the potential consequences of future climate on fruit production. Bioclimatic indices and plant phenology models are commonly used to assess the suitability of climate for growing quality fruit and to provide temporal and spatial information about regarding ongoing and future changes. In this paper, we present fruclimadapt, a flexible and versatile package in the R language that streamlines the assessment of climate adaptation and the identification of potential risks for grapevines and fruit trees. A core set of functions allows to assess climate adaptation of fruit tree species by calculating specific bioclimatic index values and to evaluate potential threats to yield and fruit quality. Three additional sets of functions have been included as companions to: i) downscale daily meteorological values to hourly data, ii) estimate winter chill and forcing heat accumulation and iii) estimate the occurrence of phenological phases. fruclimadapt is currently available from the CRAN website (https://cran.r-project.org/package=fruclimadapt).
  • PublicationOpen Access
    Evaluation of the incidence of severe trimming on grapevine (Vitis vinifera L.) water consumption
    (Elsevier, 2019-03-01) Abad Zamora, Francisco Javier; Marín Ederra, Diana; Loidi Erviti, Maite; Miranda Jiménez, Carlos; Royo Díaz, José Bernardo; Urrestarazu Vidart, Jorge; Santesteban García, Gonzaga; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura; Institute for Multidisciplinary Research in Applied Biology - IMAB; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, FPI-UPNA-2016; Gobierno de Navarra / Nafarroako Gobernua
    Viticulture in Southern Europe heads towards a scenario of drier and warmer the growing seasons due to climate change. This decrease in the amount of water available for the vines and increase in evapotranspiration make necessary finding strategies to reduce vineyard water needs. In this context, the effect of severe trimming (40¿60% of shoot length), performed at pea-size stage, on plant water status was evaluated in four different vineyards located in North of Spain. Severe trimming improved plant water status clearly only when climate conditions were more demanding, whereas only a slight improvement or no change was observed elsewhere. Lower leaf areas resulted in less water deficit following a logarithmical trend revealing that the effect was more pronounced at low leaf area levels. Severe trimming had non-significant effects on cluster number, yield and cluster weight, but presents a tendency to reduce total soluble solids content and to increase total acidity, consequently delaying ripening.