Person:
Santesteban García, Gonzaga

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Santesteban García

First Name

Gonzaga

person.page.departamento

Agronomía, Biotecnología y Alimentación

ORCID

0000-0001-6924-6744

person.page.upna

2332

Name

Search Results

Now showing 1 - 10 of 37
  • PublicationOpen Access
    Recovery of ancient grapevine plant material in peri‑urban areas. A case of success in Pamplona (Spain) leading to the recovery of cv. Berués
    (Elsevier, 2022) Crespo Martínez, Sara; Mayor Azcona, Blanca; Oneka Mugica, Oihane; Loidi Erviti, Maite; Villa Llop, Ana; Marín Ederra, Diana; Miranda Jiménez, Carlos; Santesteban García, Gonzaga; Urrestarazu Vidart, Jorge; Agronomia, Bioteknologia eta Elikadura; Institute for Multidisciplinary Research in Applied Biology - IMAB; Agronomía, Biotecnología y Alimentación; Gobierno de Navarra / Nafarroako Gobernua
    Viticulture was relatively important in the peri‑urban area of Pamplona till the end of the 19th century, but suffered a continued regression that has led to a nearly complete disappearance of vineyards. In this context, this work aims to evaluate the feasibility of recovering old grapevine germplasm in the peri‑urban area of Pamplona. The lack of a conventional source for recovering plant material (i.e. absence of old vineyards in the area) implied the need of designing an alternative prospecting procedure. This method included the analysis of the available historical information as open-access resources (orthophotos, land use maps and GIS applications) aiming to identify the areas with the highest probability of finding vines surviving from the general abandonment and uprooting of vineyards that had occurred in the 20th century. Based on the oldest on scale orthophoto available for Navarra, a vineyard land map of the peri‑urban area of Pamplona in year 1956 was built, allowing prospecting efforts to be focused on specific areas of primarily interest. Following this strategy, a total of 120 plants were collected, which corresponded to 44 genotypes. The most prominent achievement of this prospecting mission was the recovery of 15 accessions of Berués, a very old variety with a remarkable importance in the region according to old historical records, and considered to be disappeared. The methodology proposed was effective in searching for the oldest standing-alone plants surviving in the peri‑urban area of Pamplona, and may be adapted to assist the recovery of old grapevine germplasm in other currently non wine-growing regions/areas where viticulture was relevant some decades ago. © 2021
  • PublicationOpen Access
    Pollen viability, self-incompatibility, and a very singular S-allele structure between the reasons for the limited potential productivity of traditional Basque cider apple varieties
    (Elsevier, 2023) Crespo Martínez, Sara; Oneka Mugica, Oihane; Laquidain Imirizaldu, María Jesús; Urrestarazu Vidart, Jorge; Santesteban García, Gonzaga; Miranda Jiménez, Carlos; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura; Institute for Multidisciplinary Research in Applied Biology - IMAB; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Cider regions conserve a broad diversity of traditional cultivars for which knowledge has hardly evolved. Key aspects of their reproductive biology are barely known, hindering improvement in orchard management and resulting in highly variable yields. In this study, we characterized key aspects of the reproductive biology of some traditional apple cultivars from the Basque-style cider-producing area in northern Spain (Basque Country and Navarre). We tested for pollen quality, self-compatibility, and cross-compatibility (S-genotyping). The pollen quality was good except for Urtebete, Errezila, Reineta Encarnada, and triploid varieties. Self-pollination results confirm the need for pollinators, as only Moko and Txalaka showed certain self-compatibility. Regarding Sgenotyping, the population proved very singular, with an atypically high frequency of S26, a frequent allele within crabapples, and the appearance of a novel unpublished allele (S60). The knowledge generated for this variety pool will contribute to a better choice of suitable pollinators, preventing the use of popular crabapple varieties that are demonstrated to be partly incompatible with them, and will lead to an increase in potential yields in the region.
  • PublicationOpen Access
    Agronomic evaluation of eight 41 B × 110 richter grapevine genotypes as rootstock candidates for mediterranean viticulture
    (KeAi Communications, 2023) Marín Ederra, Diana; Miranda Jiménez, Carlos; Abad Zamora, Francisco Javier; Urrestarazu Vidart, Jorge; Mayor Azcona, Blanca; Villa Llop, Ana; Santesteban García, Gonzaga; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura; Institute for Multidisciplinary Research in Applied Biology - IMAB; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Choosing the most appropriate rootstock(s) is a key decision for the profitability of vineyards; therefore, there must be a sufficient range of rootstocks in the market adapted to different environmental conditions and production objectives. However, rootstock-breeding programs have been scarce in recent decades, and most of the rootstocks used today were bred a century ago, when the needs of the sector were very different from today. In this work, we aimed to evaluate new rootstock candidates before their introduction in the market. An agronomic evaluation was conducted on eight novel rootstock genotypes obtained from the first generation of the cross-pollination of 41 B Millardet et de Grasset (41 B) and 110 Richter (110 R) grafted with ‘Syrah’ and ‘Tempranillo’ and planted in a typical vineyard of the Ebro Valley in Spain. During the four consecutive growing seasons (2016e2019), growth, yield and berry composition parameters at harvest were collected. A linear mixedeffects model was constructed, considering year and block as random effects. Multiple factor analysis and hierarchical clustering on principal components were performed to establish clusters of genotypes with similar behaviour. The rootstock candidates showed a very wide performance range compared to their parents. The trial allowed us to identify two very promising candidates (RG8 and RG10), whose registration as commercial rootstocks is already in progress.
  • PublicationOpen Access
    Applications of sensing for disease detection
    (Springer, 2021) Castro, Ana Isabel de; Pérez Roncal, Claudia; Thomasson, J. Alex; Ehsani, Reza; López Maestresalas, Ainara; Yang, Chenghai; Jarén Ceballos, Carmen; Wang, Tianyi; Cribben, Curtis; Marín Ederra, Diana; Isakeit, Thomas; Urrestarazu Vidart, Jorge; López Molina, Carlos; Wang, Xiwei; Nichols, Robert L.; Santesteban García, Gonzaga; Arazuri Garín, Silvia; Peña, José Manuel; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Ingeniería; Ingeniaritza; Gobierno de Navarra / Nafarroako Gobernua; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    The potential loss of world crop production from the effect of pests, including weeds, animal pests, pathogens and viruses has been quantifed as around 40%. In addition to the economic threat, plant diseases could have disastrous consequences for the environment. Accurate and timely disease detection requires the use of rapid and reliable techniques capable of identifying infected plants and providing the tools required to implement precision agriculture strategies. The combination of suitable remote sensing (RS) data and advanced analysis algorithms makes it possible to develop prescription maps for precision disease control. This chapter shows some case studies on the use of remote sensing technology in some of the world’s major crops; namely cotton, avocado and grapevines. In these case studies, RS has been applied to detect disease caused by fungi using different acquisition platforms at different scales, such as leaf-level hyperspectral data and canopy-level remote imagery taken from satellites, manned airplanes or helicopter, and UAVs. The results proved that remote sensing is useful, effcient and effective for identifying cotton root rot zones in cotton felds, laurel wilt-infested avocado trees and escaaffected vines, which would allow farmers to optimize inputs and feld operations, resulting in reduced yield losses and increased profts.
  • PublicationOpen Access
    Sampling stratification using aerial imagery to estimate fruit load in peach tree orchards
    (MDPI, 2018) Miranda Jiménez, Carlos; Santesteban García, Gonzaga; Urrestarazu Vidart, Jorge; Loidi Erviti, Maite; Royo Díaz, José Bernardo; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura
    A quick and accurate sampling method for determining yield in peach orchards could lead to better crop management decisions, more accurate insurance claim adjustment, and reduced expenses for the insurance industry. Given that sample size depends exclusively on the variability of the trees on the orchard, it is necessary to have a quick and objective way of assessing this variability. The aim of this study was to use remote sensing to detect the spatial variability within peach orchards and classify trees into homogeneous zones that constitute sampling strata to decrease sample size. Five mature peach orchards with different degrees of spatial variability were used. A regular grid of trees was established on each orchard, their trunk cross-sectional area (TCSA) was measured, and yield was measured as number of fruits/tree on the central tree of each one of them. Red Vegetation Index (RVI) was calculated from aerial images with 0.25 m pixel -1 resolution, and used, either alone or in combination with TCSA, to delineate sampling strata using cluster fuzzy k-means. Completely randomized (CRS) and stratified samplings were compared through 10,000 iterations, and the Minimum Sample Size required to obtain estimates of actual production for three quality levels of sampling was calculated in each case. The images allowed accurate determination of the number of trees, allowing a proper application of completely randomized sampling designs. Tree size and the canopy density estimated by means of multispectral indices are complementary parameters suitable for orchard stratification, decreasing the sample size required to determine fruit count up to 20–35% compared to completely randomized samples.
  • PublicationOpen Access
    A water content continuous monitoring of grapevine xylem tissue using a portable low-power cost-effective FMCW radar
    (IEEE, 2019) Quemada Mayoral, Carlos; García González, Cebrián; Iriarte Galarregui, Juan Carlos; Marín Ederra, Diana; Gastón Beraza, Diego; Miranda Jiménez, Carlos; Gonzalo García, Ramón; Maestrojuán Biurrun, Itziar; Santesteban García, Gonzaga; Ederra Urzainqui, Íñigo; Agronomia, Bioteknologia eta Elikadura; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Agronomía, Biotecnología y Alimentación; Ingeniería Eléctrica, Electrónica y de Comunicación; Gobierno de Navarra / Nafarroako Gobernua, PI025 VITHZ; Gobierno de Navarra / Nafarroako Gobernua, 0011-1365-2016-000084 RAFF
    This paper presents the real-time monitoring of a grapevine’s water content that flows up through the xylem tissue by means of a frequency-modulated continuous-wave (FMCW) radar. The application of an optimization process, based on the super-resolution multiple signal classification (MUSIC) algorithm, has enabled the reduction of the bandwidth required to discern the xylem water content, and thus the operating frequency, achieving a depth resolution of at least 3 mm. This design advantage has resulted in a significant step forward towards a real life application, allowing the use of fully-integrated off-the-shelf components in order to implement a completely portable low-power cost-effective radar at 23.1 GHz with a 3.4 GHz bandwidth. The sensor performance has been evaluated by means of three different experiments: irrigation cycles, day/night cycles and comparison between irrigation cycles at different temperatures. From the experimental results, it is possible to assert that the contactless sensor presented in this work is very sensitive to changes in the plant’s water content, differentiating between daytime and nighttime. In addition, it has been proved that temperature has a noticeable influence over the evapotranspiration, observing negative drying slopes of 5.62 mV/cycle and 6.28 mV/cycle at 23ºC and 26ºC respectively.
  • PublicationOpen Access
    Conventional and newly bred rootstock effects on the ecophysiological response of Vitis vinifera L. cv. Tempranillo
    (Elsevier, 2023) Buesa, Ignacio; Torres Molina, Nazareth; Tortosa, Ignacio; Marín Ederra, Diana; Villa Llop, Ana; Douthe, Cyril; Santesteban García, Gonzaga; Medrano, H.; Escalona, José M.; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura; Institute for Multidisciplinary Research in Applied Biology - IMAB
    Achieving more environmentally sustainable vineyards, particularly regarding efficient water use, is paramount in semi-arid grape-growing regions. Rootstocks may be a possible strategy to address these challenges, but require a comprehensive evaluation of their effect on the scion, including ecophysiological traits. The objectives of this study were 1) to characterize the physiological response of Tempranillo cultivar grafted onto five commercial (1103 P, 110 R, 140Ru, 420 A, and SO4), and seven recently bred (RG2, RG3, RG4, RG6, RG7, RG8 and RG9) rootstocks and 2) to elucidate the relationships between agronomic and physiological traits conferred by grapevine rootstocks. This was carried out over three seasons (2018–2020) in a typical Mediterranean vineyard by determining water relations, leaf gas exchange, carbon isotope ratios and vegetative development and yield components. The results highlighted the different behaviour of ‘Tempranillo’ vines due to the rootstock effects on vine water status, photosynthetic performance, hydraulic conductance, vegetative growth and yield parameters. Overall, rootstocks inducing vigour and yield in the scion, such as 140Ru and RG8, showed higher leaf gas exchange rates and hydraulic conductance at the whole-plant level due to less negative water potentials, suggesting a higher water uptake and transport capacity than RG2, RG7 and RG9. The RG rootstocks showed a very wide range of ecophysiological responses, but only RG8 outperformed compared to the most widely used commercial rootstocks. Moreover, this response was modulated by the season and the block soil type, suggesting the importance of rootstock selection according to the edaphoclimatic conditions. Therefore, this study highlights the high potential of rootstocks to adapt to water scarcity by improving crop water productivity in vineyards and provides physiological insights for future studies and breeding programmes.
  • PublicationOpen Access
    Structural and spatial shifts in the viticulture potential of main european wine regions as an effect of climate change
    (MDPI, 2024) Irimia, Liviu Mihai; Patriche, Cristian Valeriu; Petitjean, Théo; Tissot, Cyril; Santesteban García, Gonzaga; Neethling, Etienne; Foss, Chris; Le Roux, Renan; Quénol, Hervé; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura
    Climate change modifies the base climate of the wine regions and, with it, the structure of their traditional types of wine production, imposing measures to adapt, mitigate, or capitalize on the newly emerging conditions. In order to assess the impact of climate change and establish the appropriate adaptation measures for each wine region, regional and local studies are needed, which allow knowledge of their current climate profile. The aim of this research was to identify the changes that appeared as an effect of climate change in the initial climate profile and the initial structure of the traditional types of wine production of Bordeaux (France), Loire Valley (France), Rhine-Main-Nahe (Germany), La Rioja (Spain) and Cotnari (Romania) wine regions, and also in climate suitability for wine production of the Sussex area from the UK. The study uses multi-year averages for the 1951¿1990 and 1991¿2010 time periods of reference bioclimatic indices for viticulture, namely the Average Temperature of the Growing Season (AvGST), the Huglin Index (HI), and the Oenoclimatic Aptitude Index (IAOe). The results of this research reveal significant changes in climate suitability for wine production of the studied wine regions: in the Bordeaux wine region, climate change led to the appearance of conditions for the cultivation of the Mediterranean climate varieties Grenache, Syrah, and Carignan; in the cool climate wine regions Rhine-Main-Nahe and Cotnari, traditional producers of white wines, the climate has also become suitable for the cultivation of Pinot noir and Cabernet franc varieties, and implicitly for the production of red wines; in all studied wine regions, the classes of climate suitability for viticulture shifted higher in altitude, as is the case of the La Rioja region, where, in the recent period, the grapevine can be grown up to 922.9 m asl, higher by 206.2 m compared to the 1951¿1990 time period; in the low area of each wine region, one or even two new climate suitability classes for wine grape growing appeared. The shifts revealed by this research generate solid conclusions regarding the effect of climatic change on the viticultural potential of geographical areas, namely: in the context of climate change, the altitude of the wine region has a major influence on the evolution of the local viticulture potential; a higher topography allows a better adaptation of the wine region to climate change; low-elevation wine regions are more vulnerable to climate changes, especially the further south they are located; as an effect of climate change, conditions appear in the wine regions for the cultivation of new grapevine varieties and the production of new types of wine.
  • PublicationOpen Access
    Terahertz time domain spectroscopy allows contactless monitoring of grapevine water status
    (Frontiers Media, 2015) Santesteban García, Gonzaga; Palacios Horcajada, Inés; Miranda Jiménez, Carlos; Iriarte Galarregui, Juan Carlos; Royo Díaz, José Bernardo; Gonzalo García, Ramón; Producción Agraria; Nekazaritza Ekoizpena; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Gobierno de Navarra / Nafarroako Gobernua, IIM14244.RI1
    Agriculture is the sector with the greatest water consumption, since food production is frequently based on crop irrigation. Proper irrigation management requires reliable information on plant water status, but all the plant-based methods to determine it suffer from several inconveniences, mainly caused by the necessity of destructive sampling or of alteration of the plant organ due to contact installation. The aim of this work is to test if terahertz (THz) time domain reflectance measurements made on the grapevine trunk allows contactless monitoring of plant status. The experiments were performed on a potted 14-years-old plant, using a general purpose THz emitter receiver head. Trunk THz time-domain reflection signal proved to be very sensitive to changes in plant water availability, as its pattern follows the trend of soil water content and trunk growth variations. Therefore, it could be used to contactless monitor plant water status. Apart from that, THz reflection signal was observed to respond to light conditions which, according to a specifically designed girdling experiment, was caused by changes in the phloem. This latter results opens a promising field of research for contactless monitoring of phloem activity.
  • PublicationOpen Access
    Guía de buenas prácticas para la elección del material de plantación de un viñedo
    (2023) García García, Rafael; Eraso Zabalegui, Javier; Villa Llop, Ana; Santesteban García, Gonzaga; Crespo Martínez, Sara; Gambra, Alberto; Palacios Muruzábal, Julián; Sebastián Caumel, Bárbara; Urrestarazu Vidart, Jorge; Agronomia, Bioteknologia eta Elikadura; Institute for Multidisciplinary Research in Applied Biology - IMAB; Agronomía, Biotecnología y Alimentación
    Esta es una guía gráfica sobre la elección del material vegetal para la plantación de un viñedo. Mediante vídeos sencillos se explican factores agronómicos claves a tener en cuenta antes de realizar una plantación, además de nociones básicas que se deben conocer para la elección del material vegetal. Hemos estructurado esta Guía en tres bloques, partiendo del objetivo principal que es la obtención de un viñedo equi- librado, siguiendo con la explicación de las distintas calida- des genéticas que se pueden elegir a la hora de comprar el material vegetal; y concluyendo con vídeos sobre la calidad fisiológica de la planta y cómo comprobarla. Con los últimos vídeos, más científicos, queremos explicar qué sucede a nivel celular en la zona del punto de injerto para que las conexiones vasculares se puedan generar. Los aspectos clave a destacar a la hora de la elección del material vegetal serían: • Saber medir/cuantificar las cualidades y limitaciones de la parcela. • Conocer el abanico de posibilidades en cuanto al material genético disponible. • Saber comprobar la calidad fisiológica del material vegetal. Y fundamental para realizar una plantación con éxito, es tener la máxima información posible como mínimo un año antes de realizar la plantación del viñedo.