Person:
Teniente Vallinas, Jorge

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Teniente Vallinas

First Name

Jorge

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

ISC. Institute of Smart Cities

ORCID

0000-0001-9643-5479

person.page.upna

2694

Name

Search Results

Now showing 1 - 4 of 4
  • PublicationOpen Access
    Design and characterization of terahertz CORPS beam forming networks
    (Springer, 2023) Biurrun Quel, Carlos; Haddad, Thomas; Sievert, Benedikt; Kress, Robin; Weimann, Nils; Erni, Daniel; Rennings, Andreas; Stöhr, Andreas; Teniente Vallinas, Jorge; Río Bocio, Carlos del; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    This work reviews the design and applicability of beam-forming networks based on Coherently Radiating Periodic Structures (CORPS-BFN) at Terahertz (THz) frequency bands. These versatile networks offer two operation modes: a continuous beam steering – feeding an antenna array with a linearly progressive phase distribution – using a reduced number of phase controls; or a multi-beam operation, generating independent, overlapped beams. These networks are built upon the concatenation of power combiners/dividers (PCDs) with isolated outputs. The isolation is provided by monolithically integrated resistors, implemented with Ti/TiO thin films for the first time. In this work, a planar prototype of a (inputs/outputs) microstrip CORPS-BFN for operation in the WR3.4/WM-864 band (220–330 GHz) on a thin 50 m Indium Phosphide (InP) substrate is designed, fabricated, and characterized. The measured S-parameters show a reflection coefficient better than -15 dB and an insertion loss between 1.6 and 3.2 dB in the whole band. In addition, an isolation better than 20 dB between the input ports has been measured. An overall remarkable agreement is observed between the measurements and the simulations. Last, the applications, scalability and efficiency of this type of networks at the targeted band are discussed in detail.
  • PublicationOpen Access
    New coplanar waveguide based on the gap waveguide technology
    (IEEE, 2021) Biurrun Quel, Carlos; Teniente Vallinas, Jorge; Río Bocio, Carlos del; Institute of Smart Cities - ISC
    A new planar waveguide, coined Inverted coplanar gap waveguide is presented. The concept of gap waveguides and parallel plate suppression between perfect magnetic and a perfect electric conductors is applied to coplanar waveguides in order to create a low-dispersion, low-loss transmission line. The combination of an artificial magnetic conductor and channelized top cover allow the propagation of an even coplanar mode with a strong component propagating over the air while solving encapsulation matters without the use of metallic vias. The main theory behind this new concept is presented and supported by FEM simulations on a commercial software package.
  • PublicationOpen Access
    Photonic-assisted 2-D terahertz beam steering enabled by a LWA array monolithically integrated with a BFN
    (Optica, 2022) Haddad, Thomas; Biurrun Quel, Carlos; Lu, Peng; Tebart, Jonas; Sievert, Benedikt; Makhlouf, Sumer; Grzeslo, Marcel; Teniente Vallinas, Jorge; Río Bocio, Carlos del; Stöhr, Andreas; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    A novel photonic-assisted 2-D Terahertz beam steering chip using only two tuning elements is presented. The chip is based on an array of three leaky wave antennas (LWAs) with a monolithically integrated beamforming network (BFN) on a 50 µm-thick indium phosphide substrate. The THz beam angle in elevation (E-plane) is controlled via optical frequency tuning using a tunable dual-wavelength laser. An optical delay line is used for azimuth (H-plane) beam control. The simulated beam scanning range is 92° in elevation for a frequency sweep from 0.23 THz to 0.33 THz and 69.18° in azimuth for a time delay of 3.6 ps. For the frequency range from 0.26 THz to 0.32 THz, it is confirmed experimentally that the THz beam scans from −12° to +33°, which is in good agreement with the numerical simulations. The beam direction in azimuth scans with a total angle of 39° when applying a delay difference of 1.68 ps. A good agreement is found between theoretically predicted and experimentally determined THz beam angles with a maximum angle deviation below 5°. The experimental scanning angles are limited due to the mechanical constraints of the on-wafer probes, the on-chip integrated transition and the bandwidth of the THz receiver LNA. The mechanical limitation will be overcome when using a packaged chip.
  • PublicationOpen Access
    Reduced loss and prevention of substrate modes with a novel Coplanar Waveguide based on Gap Waveguide technology
    (MDPI, 2023) Biurrun Quel, Carlos; Teniente Vallinas, Jorge; Río Bocio, Carlos del; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    The Gap Waveguide technology utilizes an Artificial Magnetic Conductor (AMC) to prevent the propagation of electromagnetic (EM) waves under certain conditions, resulting in various gap waveguide configurations. In this study, a novel combination of Gap Waveguide technology and the traditional coplanar waveguide (CPW) transmission line is introduced, analyzed, and demonstrated experimentally for the first time. This new line is referred to as GapCPW. Closed-form expressions for its characteristic impedance and effective permittivity are derived using traditional conformal mapping techniques. Eigenmode simulations using finite-element analysis are then performed to assess its low dispersion and loss characteristics. The proposed line demonstrates an effective suppression of the substrate modes in fractional bandwidths up to 90%. In addition, simulations show that a reduction of up to 20% of the dielectric loss can be achieved with respect to the traditional CPW. These features depend on the dimensions of the line. The paper concludes with the fabrication of a prototype and validation of the simulation results in the W band (75–110 GHz).