Liberal Olleta, Íñigo
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Liberal Olleta
First Name
Íñigo
person.page.departamento
Ingeniería Eléctrica, Electrónica y de Comunicación
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
61 results
Search Results
Now showing 1 - 10 of 61
Publication Open Access Spectrally stable thermal emitters enabled by material-based high-impedance surfaces(Royal Society of Chemistry, 2023) Navajas Hernández, David; Pérez Escudero, José Manuel; Liberal Olleta, Íñigo; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenRadiative thermal engineering with subwavelength metallic bodies is a key element for heat and energy management applications, communication and sensing. Here, we numerically and experimentally demonstrate metallic thermal emitters with narrowband but extremely stable emission spectra, whose resonant frequency does not shift with changes on the nanofilm thickness, the angle of observation and/or polarization. Our devices are based on epsilon-near-zero (ENZ) substrates acting as material-based high-impedance substrates. They do not require from complex nanofabrication processes, thus being compatible with large-area and low-cost applications.Publication Open Access Radiative cooling properties of portlandite and tobermorite: two cementitious minerals of great relevance in concrete science and technology(American Chemical Society, 2023-06-23) Dolado, Jorge S.; Goracci, Guido; Arrese-Igor, Silvia; Ayuela, Andrés; Torres Betancourt, Angie Tatiana; Liberal Olleta, Íñigo; Beruete Díaz, Miguel; Gaitero, Juan J.; Cagnoni, Matteo; Cappelluti, Federica; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISCAlthough concrete and cement-based materials are the most engineered materials employed by mankind, their potential for use in daytime radiative cooling applications has yet to be fully explored. Due to its complex structure, which is composed of multiple phases and textural details, fine-tuning of concrete is impossible without first analyzing its most important ingredients. Here, the radiative cooling properties of Portlandite (Ca(OH)2) and Tobermorite (Ca5Si6O16(OH)2·4H2O) are studied due to their crucial relevance in cement and concrete science and technology. Our findings demonstrate that, in contrast to concrete (which is a strong infrared emitter but a poor sun reflector), both Portlandite and Tobermorite exhibit good radiative cooling capabilities. These results provide solid evidence that, with the correct optimization of composition and porosity, concrete can be transformed into a material suitable for daytime radiative cooling.Publication Open Access Magnetic dipole super-resonances and their impact on mechanical forces at optical frequencies(Optical Society of America, 2014) Liberal Olleta, Íñigo; Ederra Urzainqui, Íñigo; Gonzalo García, Ramón; Ziolkowski, Richard W.; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaArtificial magnetism enables various transformative optical phenomena, including negative refraction, Fano resonances, and unconventional nanoantennas, beamshapers, polarization transformers and perfect absorbers, and enriches the collection of electromagnetic field control mechanisms at optical frequencies. We demonstrate that it is possible to excite a magnetic dipole super-resonance at optical frequencies by coating a silicon nanoparticle with a shell impregnated with active material. The resulting response is several orders of magnitude stronger than that generated by bare silicon nanoparticles and is comparable to electric dipole super-resonances excited in spaser-based nanolasers. Furthermore, this configuration enables an exceptional control over the optical forces exerted on the nanoparticle. It expedites huge pushing or pulling actions, as well as a total suppression of the force in both far-field and near-field scenarios. These effects empower advanced paradigms in electromagnetic manipulation and microscopy.Publication Open Access Near-zero-index media as electromagnetic ideal fluids(National Academy of Sciences, 2020) Liberal Olleta, Íñigo; Lobet, Michaël; Li, Yue; Engheta, Nader; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de ComunicaciónNear-zero-index (NZI) supercoupling, the transmission of electromagnetic waves inside a waveguide irrespective of its shape, is a counterintuitive wave effect that finds applications in optical interconnects and engineering light-matter interactions. However, there is a limited knowledge on the local properties of the electromagnetic power flow associated with supercoupling phenomena. Here, we theoretically demonstrate that the power flow in two-dimensional (2D) NZI media is fully analogous to that of an ideal fluid. This result opens an interesting connection between NZI electrodynamics and fluid dynamics. This connection is used to explain the robustness of supercoupling against any geometrical deformation, to enable the analysis of the electromagnetic power flow around complex geometries, and to examine the power flow when the medium is doped with dielectric particles. Finally, electromagnetic ideal fluids where the turbulence is intrinsically inhibited might offer interesting technological possibilities, e.g., in the design of optical forces and for optical systems operating under extreme mechanical conditions.Publication Open Access Addressing the impact of surface roughness on epsilon-near-zero silicon carbide substrates(American Chemical Society, 2023) Navajas Hernández, David; Pérez Escudero, José Manuel; Martínez Hernández, María Elena; Goicoechea Fernández, Javier; Liberal Olleta, Íñigo; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenEpsilon-near-zero (ENZ) media have been very actively investigated due to their unconventional wave phenomena and strengthened nonlinear response. However, the technological impact of ENZ media will be determined by the quality of realistic ENZ materials, including material loss and surface roughness. Here, we provide a comprehensive experimental study of the impact of surface roughness on ENZ substrates. Using silicon carbide (SiC) substrates with artificially induced roughness, we analyze samples whose roughness ranges from a few to hundreds of nanometer size scales. It is concluded that ENZ substrates with roughness in the few nanometer scale are negatively affected by coupling to longitudinal phonons and strong ENZ fields normal to the surface. On the other hand, when the roughness is in the hundreds of nanometers scale, the ENZ band is found to be more robust than dielectric and surface phonon polariton (SPhP) bands.Publication Open Access Quantum and thermal noise in coupled non-hermitian waveguide systems with different models of gain and loss(De Gruyter, 2025-01-03) Hernández Martínez, Osmery; Liberal Olleta, Íñigo; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISCNon-Hermitian (NH) photonic systems leverage gain and loss to open new directions for nanophotonic technologies. However, the quantum and thermal noise intrinsically associated with gain/loss affects the eigenvalue/eigenvector structure of NH systems, and thus the existence of exceptional points, as well as the practical noise performance of these systems. Here, we present a comparative analysis of the impact of different gain and loss mechanisms on the noise generated in gain-loss compensated NH waveguide systems. Our results highlight important differences in the eigenvalue/eigenvector structure, noise power, photon statistics and squeezing. At the same time, we identify some universal properties such as the occurrence of phase-transition points in parameter space and intriguing phenomena related to them, including coalescence of pairs of eigenvectors, gain-loss compensation, and linear scaling of the noise with the length of the waveguide. We believe that these results contribute to a better understanding of the impact of the gain/loss mechanism on the noise generated in NH systems.Publication Open Access Momentum considerations inside near-zero index materials(Springer Nature, 2022) Lobet, Michaël; Liberal Olleta, Íñigo; Vertchenko, Larissa; Lavrinenko, Andrei V.; Engheta, Nader; Mazur, Eric; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenNear-zero index (NZI) materials, i.e., materials having a phase refractive index close to zero, are known to enhance or inhibit light-matter interactions. Most theoretical derivations of fundamental radiative processes rely on energetic considerations and detailed balance equations, but not on momentum considerations. Because momentum exchange should also be incorporated into theoretical models, we investigate momentum inside the three categories of NZI materials, i.e., inside epsilon-and-mu-near-zero (EMNZ), epsilon-near-zero (ENZ) and mu-near-zero (MNZ) materials. In the context of Abraham-Minkowski debate in dispersive materials, we show that Minkowski-canonical momentum of light is zero inside all categories of NZI materials while Abraham-kinetic momentum of light is zero in ENZ and MNZ materials but nonzero inside EMNZ materials. We theoretically demonstrate that momentum recoil, transfer momentum from the field to the atom and Doppler shift are inhibited in NZI materials. Fundamental radiative processes inhibition is also explained due to those momentum considerations inside three-dimensional NZI materials. Absence of diffraction pattern in slits experiments is seen as a consequence of zero Minkowski momentum. Lastly, consequence on Heisenberg inequality, microscopy applications and on the canonical momentum as generator of translations are discussed. Those findings are appealing for a better understanding of fundamental light-matter interactions at the nanoscale as well as for lasing applications.Publication Open Access Direct observation of ideal electromagnetic fluids(Springer Nature, 2022) Li, Hao; Zhou, Ziheng; Sun, Wangyu; Lobet, Michaël; Engheta, Nader; Liberal Olleta, Íñigo; Li, Yue; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de ComunicaciónNear-zero-index (NZI) media have been theoretically identified as media where electromagnetic radiations behave like ideal electromagnetic fluids. Within NZI media, the electromagnetic power flow obeys equations similar to those of motion for the velocity field in an ideal fluid, so that optical turbulence is intrinsically inhibited. Here, we experimentally observe the electromagnetic power flow distribution of such an ideal electromagnetic fluid propagating within a cutoff waveguide by a semi-analytical reconstruction technique. This technique provides direct proof of the inhibition of electromagnetic vorticity at the NZI frequency, even in the presence of complex obstacles and topological changes in the waveguide. Phase uniformity and spatially-static field distributions, essential characteristics of NZI materials, are also observed. Measurement of the same structure outside the NZI frequency range reveals existence of vortices in the power flow, as expected for conventional optical systems. Therefore, our results provide an important step forward in the development of ideal electromagnetic fluids, and introduce a tool to explore the subwavelength behavior of NZI media including fully vectorial and phase information. © 2022, The Author(s).Publication Open Access Quantum antenna arrays: the role of quantum interference on direction-dependent photon statistics(American Physical Society, 2018) Liberal Olleta, Íñigo; Ederra Urzainqui, Íñigo; Ziolkowski, Richard W.; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de ComunicaciónWe investigate the role of quantum interference phenomena on the characteristics of the fields radiated by an array of quantum emitters. In analogy to, but distinct from, classical outcomes, we demonstrate that the array geometry empowers control over direction-dependent photon statistics of arbitrary order. Our formulation enables the recognition of configurations providing spatial correlations with no classical counterpart. For example, we identify a system in which the angular distribution of the average number of photons is independent of the number and position of the emitters, while its higher-order photon statistics exhibit a directional behavior. These results extend our understanding of the fields generated by ensembles of quantum emitters, with potential applications to nonclassical light sources.Publication Open Access Surface roughness effects on ENZ media IR spectra(IEEE, 2023-09-04) Navajas Hernández, David; Pérez Escudero, José Manuel; Liberal Olleta, Íñigo; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISCThe development of high-performance nanophotonic technologies faces challenges like material losses and surface roughness. While surface roughness has been studied in the plasmonic regime, its effect on epsilon-near-zero (ENZ) media has been less explored. Two theoretical scenarios arise regarding roughness in ENZ media: one predicts the excitation of a strong longitudinal electric field, while the other suggests minimal changes in reflection due to the large effective wavelength. This study investigates silicon carbide (SiC) as an ENZ substrate, using deep reactive ion etching (DRIE) to create significant surface roughness. The findings show that surface roughness affects the reflection spectra, induces polaritonic effects, and highlights the robustness of SiC against surface roughness. Numerical simulations and experimental measurements confirm these results, revealing that ENZ substrates maintain their reflective properties even with surface roughness on the scale of hundreds of nanometers.