Mallor Giménez, Fermín
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Mallor Giménez
First Name
Fermín
person.page.departamento
Estadística, Informática y Matemáticas
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
32 results
Search Results
Now showing 1 - 10 of 32
Publication Open Access Simulation of household electricity consumption by using functional data analysis(Taylor & Francis, 2018) Mallor Giménez, Fermín; Moler Cuiral, José Antonio; Urmeneta Martín-Calero, Henar; Estadística e Investigación Operativa; Estatistika eta Ikerketa OperatiboaPublication Open Access Hospital preparedness during epidemics using simulation: the case of COVID-19(Springer, 2021) García de Vicuña Bilbao, Daniel; Esparza, Laida; Mallor Giménez, Fermín; Institute of Smart Cities - ISC; Gobierno de Navarra / Nafarroako GobernuaThis paper presents a discrete event simulation model to support decision-making for the short-term planning of hospital resource needs, especially Intensive Care Unit (ICU) beds, to cope with outbreaks, such as the COVID-19 pandemic. Given its purpose as a short-term forecasting tool, the simulation model requires an accurate representation of the current system state and high fidelity in mimicking the system dynamics from that state. The two main components of the simulation model are the stochastic modeling of patient admission and patient flow processes. The patient arrival process is modelled using a Gompertz growth model, which enables the representation of the exponential growth caused by the initial spread of the virus, followed by a period of maximum arrival rate and then a decreasing phase until the wave subsides. We conducted an empirical study concluding that the Gompertz model provides a better fit to pandemic-related data (positive cases and hospitalization numbers) and has superior prediction capacity than other sigmoid models based on Richards, Logistic, and Stannard functions. Patient flow modelling considers different pathways and dynamic length of stay estimation in several healthcare stages using patient-level data. We report on the application of the simulation model in two Autonomous Regions of Spain (Navarre and La Rioja) during the two COVID-19 waves experienced in 2020. The simulation model was employed on a daily basis to inform the regional logistic health care planning team, who programmed the ward and ICU beds based on the resulting predictions.Publication Open Access Un modelo para predecir cuántas camas UCI harán falta durante cada oleada(Asociacion the Conversation España, 2021) Mallor Giménez, Fermín; García de Vicuña Bilbao, Daniel; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISCLa crisis financiera mundial de 2008 puso de moda en España el término económico “prima de riesgo”, hasta entonces desconocido. Del mismo modo, la pandemia ha popularizado expresiones y términos como “doblar la curva”, “incidencia acumulada” e incluso conceptos epidemiológicos más específicos como “el número efectivo de reproducción R₀”. Ocupan portadas de periódicos, así como espacios en noticiarios televisivos y radiofónicos. Constituyen una muestra del uso de las matemáticas para describir la evolución de la pandemia y para proporcionar indicadores con los que las autoridades políticas pueden fundamentar una toma de decisiones informada sobre medidas de distanciamiento social y restricciones a la movilidad. Sin embargo, los modelos matemáticos no solo sirven para describir qué ha pasado o el estado actual de la pandemia, sino que pueden facilitar predicciones muy útiles sobre cómo va a evolucionar. Estas son útiles para la planificación de los recursos sanitarios necesarios para atender a paciente covid-19, como las camas UCI. La planificación facilita la utilización eficiente de recursos y, en consecuencia, proporcionar una mejor atención a todos los pacientes, covid y no covid. Los modelos matemáticos más útiles para predecir variables relacionadas con la evolución de la pandemia son los de simulación. Estos modelos son capaces de representar características complejas de la realidad pandémica, como su aleatoriedad e incertidumbre, así como la variabilidad en el impacto que la enfermedad puede tener en distintas personasPublication Open Access Operations research helps public health services managers planning resources in the COVID-19 crisis(Sociedad de Estadística e Investigación Operativa, 2020) García de Vicuña Bilbao, Daniel; Cildoz Esquíroz, Marta; Gastón Romeo, Martín; Azcárate Camio, Cristina; Mallor Giménez, Fermín; Esparza, Laida; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y MatemáticasThis article presents the usefulness of operational research models tosupport the decision-making in management problems on the COVID-19 pandemic. The work describes a discrete event simulation model combined with population growth models, which has been used to provide daily predictions of the needs of ward and intensive care unit beds during the COVID-19 outbreak in the Autonomous Community of Navarre, in Spain. This work also discusses the use of the simulation model in non-acutephases of the pandemic to support decision-making during the return to the normal operation of health services or as a resource management learning tool for health logistic planners.Publication Open Access Accumulating priority queues versus pure priority queues for managing patients in emergency departments(Elsevier, 2019) Cildoz Esquíroz, Marta; Ibarra, Amaia; Mallor Giménez, Fermín; Institute of Smart Cities - ISCImproving the quality of healthcare in emergency departments (EDs) is at the forefront of many hospital managers’ efforts, as they strive to plan and implement better patient flow strategies. In this paper, a new approach to manage the patient flow in EDs after triage is proposed. The new queue discipline, named accumulative priority queue with finite horizon and denoted by APQ-h, is an extension of the accumulative priority queue (APQ) discipline that considers not only the acuity level of patients and their waiting time but also the stage of the healthcare treatment. APQ disciplines have been studied in the literature from a queueing theory point of view, which requires assumptions rarely found in real EDs, such as homogeneity in the patient arrival pattern and only one service stage. The APQ-h discipline accumulates priority from the point of waiting for the first physician consultation until the moment the waiting time exceeds the upper time limit set to access the physician after the patient's arrival. A recent study shows that a management strategy of this type is applied in practice in several Canadian EDs. The main aim of this paper is to explore the implementation of APQ-h managing policies in a real ED. For this purpose, a simulation model replicating a real ED is developed. This simulation model is also used to obtain the optimal APQ type polices through a simulation-based optimization method that solves a multi-objective and stochastic optimization problem. Arrival to provider time and total waiting time in the ED are considered to be the key ED performance indicators. An extensive computational analysis shows the flexibility of the APQ-h and APQ discipline and their superiority over other pure priority disciplines in a real setting and in a variety of ED scenarios. In addition, no superiority over the APQ discipline is demonstrated. © 2019 The AuthorsPublication Open Access I Congreso Salud, Desastres y Desarrollo Sostenible: libro congreso(2022) Azcárate Camio, Cristina; Cildoz Esquíroz, Marta; Frías Paredes, Laura; Ibarra, Amaia; Galbete Jiménez, Arkaitz; García de Vicuña Bilbao, Daniel; Gastón Romeo, Martín; Moler Cuiral, José Antonio; Mallor Giménez, Fermín; Jean Louis, Clint; Institute of Smart Cities - ISCEl congreso se plantea como un foro de encuentro de investigadores del área de Investigación Operativa con interés en aplicaciones a la salud, los desastres y el desarrollo sostenible, y los profesionales de la toma de decisiones concernientes a los ámbitos anteriores. Este encuentro promueve el intercambio de conocimiento y experiencias entre Universidad y Servicios de Salud para afrontar retos asociados al acceso de la población a unos servicios de salud de calidad y a la gestión del riesgo creciente de desastres naturales o provocados por el ser humano. El envejecimiento de la población y el desarrollo tecnológico plantean nuevos entornos para la provisión de los servicios de salud, en los que su correcta planificación y gestión debe contribuir a garantizar su eficiencia y sostenibilidad. El creciente impacto en términos de vidas humanas y daños económicos causados por desastres naturales y no naturales, como incendios, inundaciones, terremotos, fugas industriales, pandemias, etc. precisa de su comprensión para desarrollar estrategias de prevención y elaborar planes efectivos de respuesta.Publication Open Access A management flight simulator of an intensive care unit(IEEE, 2019) García de Vicuña Bilbao, Daniel; Mallor Giménez, Fermín; Esparza, Laida; Mateo, Pedro; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaManagement Flight Simulators (MFS) supply a simulated environment in which managers can learn from experience in a controlled setting. Although its use is usual in other areas, no such software has been developed to learn about the complexity of the Intensive Care Unit (ICU) management. This paper describes an MFS of ICUs which includes main features that distinguish it from other simulators such as the evolution of patients' health status and the recreation of real discharge and admission processes. The mathematical model is a discrete event simulation model in which different types of patients arrive at the ICU (emergency and scheduled patients). The user manages the simulated ICU by deciding about their admission or diversion and which inpatients are discharged. The analysis of recorded data is used to detect controversial scenarios and to understand how physicians' decisions are made.Publication Open Access Motor unit action potential duration, II: a new automatic measurement method based on the wavelet transform(Lippincott, Williams & Wilkins, 2007) Rodríguez Carreño, Ignacio; Gila Useros, Luis; Malanda Trigueros, Armando; García Gurtubay, Ignacio; Mallor Giménez, Fermín; Gómez Elvira, Sagrario; Rodríguez Falces, Javier; Navallas Irujo, Javier; Ingeniería Eléctrica y Electrónica; Estadística e Investigación Operativa; Ingeniaritza Elektrikoa eta Elektronikoa; Estatistika eta Ikerketa OperatiboaTo present and evaluate a new algorithm, based on the wavelet transform, for the automatic measurement of motor unit action potential (MUAP) duration. A total of 240 MUAPs were studied. The waveform of each MUAP was wavelet-transformed, and the start and end points were estimated by regarding the maxima and minima points in a particular scale of the wavelet transform. The results of the new method were compared with the gold standard of duration marker positions obtained by manual measurement. The new method was also compared with a conventional algorithm, which we had found to be best in a previous comparative study. To evaluate the new method against manual measurements, the dispersion of automatic and manual duration markers were analyzed in a set of 19 repeatedly recorded MUAPs. The differences between the new algorithm’s marker positions and the gold standard of duration marker positions were smaller than those observed with the conventional method. The dispersion of the new algorithm’s marker positions was slightly less than that of the manual one. Our new method for automatic measurement of MUAP duration is more accurate than other available algorithms and more consistent than manual measurements.Publication Open Access Assessing the impact of physicians' behavior variability on performance indicators in emergency departments: an agent-based model(IEEE, 2025-01-20) Baigorri Iguzquiaguirre, Miguel; Cildoz Esquíroz, Marta; Mallor Giménez, Fermín; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISCIn emergency departments (EDs), traditional simulation models often overlook the variability in physician practice, assuming uniform service provision. Our study introduces a hybrid agent-based discrete-event simulation (AB-DES) model to capture this variability. Through simulation scenarios based on real ED data, we assess the impact of physician behavior on key performance indicators such as patient waiting times and physician stress levels. Results show significant variability in both individual physician performance and average metrics across scenarios. By integrating physician agent modeling, informed by literature from medical and workplace psychology, our approach offers a more nuanced representation of ED dynamics. This model serves as a foundation for future developments towards digital twins, facilitating real-time ED management. Our findings emphasize the importance of considering physician behavior for accurate performance assessment and optimization.Publication Open Access Design exploration prior to blade multi-disciplinary optimisation(IOP Publishing, 2018) Echeverría Durá, Fernando; Mallor Giménez, Fermín; San Miguel, Unai; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaThe approach of designing blades as a multi-disciplinary, holistic optimisation implies significant challenges owing to the high complexity of the involved factors such as aerodynamics, elasticity, controller and loads. Moreover, the large number of design variables complicates the intuitive analysis of the relationship between the design variables and responses. This paper presents the design variable exploration prior to blade optimisation, which reveals certain design variable combinations that lead to undesirable dynamic load amplification. Statistical tools, such as multiple logistic regression and fast and frugal decision trees, are applied to identify the conditions causing the phenomenon and predict the possible appearance under new design variable combinations.