Mallor Giménez, Fermín

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Mallor Giménez

First Name

Fermín

person.page.departamento

Estadística, Informática y Matemáticas

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 32
  • PublicationOpen Access
    Cálculo de la distribución del tiempo de vida de componentes mediante autopsia en sistemas binarios aditivos, serie-paralelo y paralelo-serie
    (Universitat Politècnica de Catalunya, 1997) Mallor Giménez, Fermín; Azcárate Camio, Cristina; Pérez Prados, Antonio; Estadística e Investigación Operativa; Estatistika eta Ikerketa Operatiboa
    En este artículo se estudia el problema de determinar la función de distribución del tiempo de vida de las componentes de un sistema binario, a partir del conocimiento de las leyes que rigen el funcionamiento del sistema y del conjunto de componentes que causa su fallo (obtenida mediante autopsia del sistema en el momento de su deterioro). Se presentan los resultados de Meilijson (1981) y Nowik (1990) que proponen un sistema de ecuaciones impíıcito para obtener estas distribuciones. Sin embargo, se observa que este sistema es de muy difícil resolución práctica, por lo que nosotros consideramos un método cuya utilización es más restringida pero más sencilla, y estudiamos su aplicación a sistemas binarios aditivos, serie-paralelo y paralelo-serie.
  • PublicationOpen Access
    A GRASP-based algorithm for solving the emergency room physician scheduling problem
    (Elsevier, 2021) Cildoz Esquíroz, Marta; Mallor Giménez, Fermín; Mateo, Pedro; Institute of Smart Cities - ISC
    This paper addresses a physician scheduling problem in an Emergency Room (ER) requiring a long-term work calendar to allocate work days and types of shift among all the doctors. The mathematical model is created without simplifications, using the real calendar, including holidays. This precludes the possibility of cyclic-type solutions, and involves numerous and varied constraints (demand, workload, ergonomics, fairness, etc.). An effective solution to this very difficult practical problem cannot be obtained, for large instances, with exact solution methods. We formulate a mathematical representation of a real-world ER physician scheduling problem featuring a hybrid algorithm combining continuous linear programming with a greedy randomized adaptive search procedure (GRASP). Linear programming is used to model a general physician-demand covering problem, where the solution is used to guide the construction phase of the GRASP, to obtain initial full schedules for subsequent improvement by iterative application of Variable Neighborhood Descent Search (VNDS) and Network Flow Optimization (NFO). A computational study shows the superiority of our approach over the Integer Linear Programming method in a set of instances of varying size and difficulty inspired by a real setting. The methodology is embedded in a software tool for generating one-year-ahead physician schedules for a local ER. These solutions, which are now in use, outperform the manually-created schedules used previously. © 2021 Elsevier B.V.
  • PublicationOpen Access
    The problem of the last bed: contextualization and a new simulation framework for analyzing physician decisions
    (Elsevier, 2019) Azcárate Camio, Cristina; Esparza, Laida; Mallor Giménez, Fermín; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika
    Faced with a full Intensive Care Unit (ICU), physicians need to decide between turning away a new patient in need of critical care and creating a vacancy by prematurely discharging a current occupant. This dilemma is widely discussed in the medical literature, where the influencing factors are identified, the patient discharge process described and the patient health consequences analyzed. Nevertheless, the existing mathematical models of ICU management practices overlook many of the factors considered by physicians in real-world triage decisions. This paper offers a review of the medical and mathematical literature on patient discharge decisions, and a proposal for a new simulation framework to enable more realistic mathematical modeling of the real-world patient discharge process. Our model includes a) the times at which discharge decisions are made and setup times for patient transfer from the ICU to a general ward and preparation of an ICU bed for an incoming patient, in order to capture the impossibility of an immediate switch of patients; b) advance notice of the number of patients due to arrive from elective surgery requiring intensive postoperative care and potentially triggering the need for early discharges to avoid surgery cancelations; and c) patient health status (to reflect the dependency of physicians’ discharge decisions on health indicators) by modeling length of stay with a phase-type distribution in which a medical meaning is assigned to each state. A simulation-based optimization method is also proposed as a means to obtain optimal discharge decisions as a function of the health status of current patients, the bed occupancy level and the number of planned arrivals from elective surgery over the following days. Optimal decisions should strike a balance between patient rejection and LoS reduction. This new simulation framework generates an optimal discharge policy, which closely resembles real decision-making under a cautious discharge policy, where the frequency of early discharge increases with the ICU occupancy level. This is a contrast with previous simulation models, which consider only the triage of the last bed, disregarding the pressures on physicians faced with high bed occupancy levels.
  • PublicationOpen Access
    Police as first reponders improve out-of-hospital cardiac arrest survival
    (BMC, 2023) Jean Louis, Clint; Cildoz Esquíroz, Marta; Echarri Sucunza, Alfredo; Beaumont, Carlos; Mallor Giménez, Fermín; Greif, Robert; Baigorri Iguzquiaguirre, Miguel; Reyero Díez, Diego; Ciencias de la Salud; Osasun Zientziak; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Background: Police forces are abundant circulating and might arrive before the emergency services to Out-of-Hospital-Cardiac-Arrest victims. If properly trained, they can provide basic life support and early defibrillation within minutes, probably increasing the survival of the victims. We evaluated the impact of local police as first responders on the survival rates of out-of-hospital cardiac arrest victims in Navarra, Spain, over 7 years. Methods: A retrospective analysis of an ongoing Out-of-Hospital Cardiac registry to compare the characteristics and survival of Out-of-Hospital-Cardiac-Arrest victims attended to in first place by local police, other first responders, and emergency ambulance services between 2014 and 2020. Results: Of 628 cases, 73.7% were men (aged 68.9 ± 15.8), and 26.3% were women (aged 65,0 ± 14,7 years, p < 0.01). Overall survival of patients attended to by police in the first place was 17.8%, other first responders 17.4% and emergency services 13.5% with no significant differences (p > 0.1). Time to initiating cardiopulmonary resuscitation is significant for survival. When police arrived first and started CPR before the emergency services, they arrived at a mean of 5.4 ± 3 min earlier (SD = 3.10). This early police intervention showed an increase in the probability of survival by 10.1%. Conclusions: The privileged location and the sole amount of personnel of local police forces trained in life support and their fast delivery of defibrillators as first responders can improve the survival of out-of-hospital cardiac arrest victims.
  • PublicationOpen Access
    The optimal container selection problem for parts transportation in the automotive sector
    (Elsevier, 2024) Cildoz Esquíroz, Marta; Mateo, Pedro; Alonso, María Teresa; Parreño, Francisco; Alvarez-Valdes, Ramon; Mallor Giménez, Fermín; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC
    Today's automotive factories are essentially assembly plants that receive parts from a vast network of suppliers around the world. Transporting thousands of part types over very long distances is a major logistic problem whose solution is a critical factor in the factory management. In this study we have developed a statistical and optimization methodology implemented in a software tool to help the decision makers select the most appropriate container for each part. A key element is to determine the number of parts that fit in a given container. Two optimization procedures have been developed, depending on the type of part, and used to calculate costs of each container. These costs include not only transporting parts from supplier to factory, but also the costs of handling parts within the factory and returning the empty containers to the supplier.
  • PublicationOpen Access
    Estimation of patient flow in hospitals using up-to-date data: application to bed demand prediction during pandemic waves
    (Public Library of Science, 2023) García de Vicuña Bilbao, Daniel; López-Cheda, Ana; Jácome, María Amalia; Mallor Giménez, Fermín; Institute of Smart Cities - ISC
    Hospital bed demand forecast is a first-order concern for public health action to avoid healthcare systems to be overwhelmed. Predictions are usually performed by estimating patients flow, that is, lengths of stay and branching probabilities. In most approaches in the literature, estimations rely on not updated published information or historical data. This may lead to unreliable estimates and biased forecasts during new or non-stationary situations. In this paper, we introduce a flexible adaptive procedure using only near-real-time information. Such method requires handling censored information from patients still in hospital. This approach allows the efficient estimation of the distributions of lengths of stay and probabilities used to represent the patient pathways. This is very relevant at the first stages of a pandemic, when there is much uncertainty and too few patients have completely observed pathways. Furthermore, the performance of the proposed method is assessed in an extensive simulation study in which the patient flow in a hospital during a pandemic wave is modelled. We further discuss the advantages and limitations of the method, as well as potential extensions.
  • PublicationOpen Access
    Dynamic mean absolute error as new measure for assessing forecasting errors
    (Elsevier, 2018-02-14) Frías Paredes, Laura; Mallor Giménez, Fermín; Gastón Romeo, Martín; León, Teresa; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC
    Accurate wind power forecast is essential for grid integration, system planning, and electricity trading in certain electricity markets. Therefore, analyzing prediction errors is a critical task that allows a comparison of prediction models and the selection of the most suitable model. In this work, the temporal error and absolute magnitude error are simultaneously considered to assess the forecast error. The trade-off between both types of errors is computed, analyzed, and interpreted. Moreover, a new index, the dynamic mean absolute error, DMAE, is defined to measure the prediction accuracy. This index accounts for both error components: temporal and absolute. Real cases of wind energy forecasting are used to illustrate the use of the new DMAE index and show the advantages of this new index over other error indices.
  • PublicationOpen Access
    Introducing the Temporal Distortion Index to perform a bidimensional analysis of renewable energy forecast
    (Elsevier, 2015-11-21) Frías Paredes, Laura; Mallor Giménez, Fermín; León, Teresa; Gastón Romeo, Martín; Estadística e Investigación Operativa; Estatistika eta Ikerketa Operatiboa; Institute of Smart Cities - ISC
    Wind has been the largest contributor to the growth of renewal energy during the early 21st century. However, the natural uncertainty that arises in assessing the wind resource implies the occurrence of wind power forecasting errors which perform a considerable role in the impacts and costs in the wind energy integration and its commercialization. The main goal of this paper is to provide a deeper insight in the analysis of timing errors which leads to the proposal of a new methodology for its control and measure. A new methodology, based on Dynamic TimeWarping, is proposed to be considered in the estimation of accuracy as attribute of forecast quality. A new dissimilarity measure, the Temporal Distortion Index, among time series is introduced to complement the traditional verication measures found in the literature. Furthermore we provide a bi-criteria perspective to the problem of comparing different forecasts. The methodology is illustrated with several examples including a real case.
  • PublicationOpen Access
    Accumulating priority queues versus pure priority queues for managing patients in emergency departments
    (Elsevier, 2019) Cildoz Esquíroz, Marta; Ibarra, Amaia; Mallor Giménez, Fermín; Institute of Smart Cities - ISC
    Improving the quality of healthcare in emergency departments (EDs) is at the forefront of many hospital managers’ efforts, as they strive to plan and implement better patient flow strategies. In this paper, a new approach to manage the patient flow in EDs after triage is proposed. The new queue discipline, named accumulative priority queue with finite horizon and denoted by APQ-h, is an extension of the accumulative priority queue (APQ) discipline that considers not only the acuity level of patients and their waiting time but also the stage of the healthcare treatment. APQ disciplines have been studied in the literature from a queueing theory point of view, which requires assumptions rarely found in real EDs, such as homogeneity in the patient arrival pattern and only one service stage. The APQ-h discipline accumulates priority from the point of waiting for the first physician consultation until the moment the waiting time exceeds the upper time limit set to access the physician after the patient's arrival. A recent study shows that a management strategy of this type is applied in practice in several Canadian EDs. The main aim of this paper is to explore the implementation of APQ-h managing policies in a real ED. For this purpose, a simulation model replicating a real ED is developed. This simulation model is also used to obtain the optimal APQ type polices through a simulation-based optimization method that solves a multi-objective and stochastic optimization problem. Arrival to provider time and total waiting time in the ED are considered to be the key ED performance indicators. An extensive computational analysis shows the flexibility of the APQ-h and APQ discipline and their superiority over other pure priority disciplines in a real setting and in a variety of ED scenarios. In addition, no superiority over the APQ discipline is demonstrated. © 2019 The Authors
  • PublicationOpen Access
    Coping with stress in emergency department physicians through improved patient-flow management
    (Elsevier, 2020) Cildoz Esquíroz, Marta; Ibarra, Amaia; Mallor Giménez, Fermín; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y Matemáticas
    This paper provides a method for the real-time monitoring of job stress in emergency department (ED) physicians. It is implemented in a Decision Support System (DSS) designed for patient-to-physician assignment after triage. Our concept of job stress includes not only the workload but also time pressure and uncertainty. A job stress function is estimated based on the consensus views of ED physicians obtained through a novel methodology involving stress factor analysis, questionnaire design, and the statistical analysis of expert opinions. The resulting stress score enables the assessment of job stress using workload data from the ED physicians’ whiteboard. These data can be used for the real-time measurement and monitoring of ED physician job stress in a stochastic and dynamic environment, which is the main novelty of this method as compared to previous workload and stress measurement proposals. A further advantage of this methodology is that it is general enough to be adapted to physician job stress monitoring in any ED. The use of the DSS for ED patient-flow management reduces job stress and spreads it more evenly among the whole team of physicians, while also improving other important ED performance measures such as arrival-to-provider time and the percentage of compliance with patient waiting time targets. A case study illustrates the application of the methodology for the construction of a stress-score, the monitoring of physician stress levels, and ED patient-flow management.