Mallor Giménez, Fermín
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Mallor Giménez
First Name
Fermín
person.page.departamento
Estadística, Informática y Matemáticas
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
16 results
Search Results
Now showing 1 - 10 of 16
Publication Open Access Motor unit action potential duration, II: a new automatic measurement method based on the wavelet transform(Lippincott, Williams & Wilkins, 2007) Rodríguez Carreño, Ignacio; Gila Useros, Luis; Malanda Trigueros, Armando; García Gurtubay, Ignacio; Mallor Giménez, Fermín; Gómez Elvira, Sagrario; Rodríguez Falces, Javier; Navallas Irujo, Javier; Ingeniería Eléctrica y Electrónica; Estadística e Investigación Operativa; Ingeniaritza Elektrikoa eta Elektronikoa; Estatistika eta Ikerketa OperatiboaTo present and evaluate a new algorithm, based on the wavelet transform, for the automatic measurement of motor unit action potential (MUAP) duration. A total of 240 MUAPs were studied. The waveform of each MUAP was wavelet-transformed, and the start and end points were estimated by regarding the maxima and minima points in a particular scale of the wavelet transform. The results of the new method were compared with the gold standard of duration marker positions obtained by manual measurement. The new method was also compared with a conventional algorithm, which we had found to be best in a previous comparative study. To evaluate the new method against manual measurements, the dispersion of automatic and manual duration markers were analyzed in a set of 19 repeatedly recorded MUAPs. The differences between the new algorithm’s marker positions and the gold standard of duration marker positions were smaller than those observed with the conventional method. The dispersion of the new algorithm’s marker positions was slightly less than that of the manual one. Our new method for automatic measurement of MUAP duration is more accurate than other available algorithms and more consistent than manual measurements.Publication Open Access Cálculo de la distribución del tiempo de vida de componentes mediante autopsia en sistemas binarios aditivos, serie-paralelo y paralelo-serie(Universitat Politècnica de Catalunya, 1997) Mallor Giménez, Fermín; Azcárate Camio, Cristina; Pérez Prados, Antonio; Estadística e Investigación Operativa; Estatistika eta Ikerketa OperatiboaEn este artículo se estudia el problema de determinar la función de distribución del tiempo de vida de las componentes de un sistema binario, a partir del conocimiento de las leyes que rigen el funcionamiento del sistema y del conjunto de componentes que causa su fallo (obtenida mediante autopsia del sistema en el momento de su deterioro). Se presentan los resultados de Meilijson (1981) y Nowik (1990) que proponen un sistema de ecuaciones impíıcito para obtener estas distribuciones. Sin embargo, se observa que este sistema es de muy difícil resolución práctica, por lo que nosotros consideramos un método cuya utilización es más restringida pero más sencilla, y estudiamos su aplicación a sistemas binarios aditivos, serie-paralelo y paralelo-serie.Publication Open Access The problem of the last bed: contextualization and a new simulation framework for analyzing physician decisions(Elsevier, 2019) Azcárate Camio, Cristina; Esparza, Laida; Mallor Giménez, Fermín; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaFaced with a full Intensive Care Unit (ICU), physicians need to decide between turning away a new patient in need of critical care and creating a vacancy by prematurely discharging a current occupant. This dilemma is widely discussed in the medical literature, where the influencing factors are identified, the patient discharge process described and the patient health consequences analyzed. Nevertheless, the existing mathematical models of ICU management practices overlook many of the factors considered by physicians in real-world triage decisions. This paper offers a review of the medical and mathematical literature on patient discharge decisions, and a proposal for a new simulation framework to enable more realistic mathematical modeling of the real-world patient discharge process. Our model includes a) the times at which discharge decisions are made and setup times for patient transfer from the ICU to a general ward and preparation of an ICU bed for an incoming patient, in order to capture the impossibility of an immediate switch of patients; b) advance notice of the number of patients due to arrive from elective surgery requiring intensive postoperative care and potentially triggering the need for early discharges to avoid surgery cancelations; and c) patient health status (to reflect the dependency of physicians’ discharge decisions on health indicators) by modeling length of stay with a phase-type distribution in which a medical meaning is assigned to each state. A simulation-based optimization method is also proposed as a means to obtain optimal discharge decisions as a function of the health status of current patients, the bed occupancy level and the number of planned arrivals from elective surgery over the following days. Optimal decisions should strike a balance between patient rejection and LoS reduction. This new simulation framework generates an optimal discharge policy, which closely resembles real decision-making under a cautious discharge policy, where the frequency of early discharge increases with the ICU occupancy level. This is a contrast with previous simulation models, which consider only the triage of the last bed, disregarding the pressures on physicians faced with high bed occupancy levels.Publication Open Access Dynamic mean absolute error as new measure for assessing forecasting errors(Elsevier, 2018-02-14) Frías Paredes, Laura; Mallor Giménez, Fermín; Gastón Romeo, Martín; León, Teresa; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISCAccurate wind power forecast is essential for grid integration, system planning, and electricity trading in certain electricity markets. Therefore, analyzing prediction errors is a critical task that allows a comparison of prediction models and the selection of the most suitable model. In this work, the temporal error and absolute magnitude error are simultaneously considered to assess the forecast error. The trade-off between both types of errors is computed, analyzed, and interpreted. Moreover, a new index, the dynamic mean absolute error, DMAE, is defined to measure the prediction accuracy. This index accounts for both error components: temporal and absolute. Real cases of wind energy forecasting are used to illustrate the use of the new DMAE index and show the advantages of this new index over other error indices.Publication Open Access A management flight simulator of an intensive care unit(IEEE, 2019) García de Vicuña Bilbao, Daniel; Mallor Giménez, Fermín; Esparza, Laida; Mateo, Pedro; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaManagement Flight Simulators (MFS) supply a simulated environment in which managers can learn from experience in a controlled setting. Although its use is usual in other areas, no such software has been developed to learn about the complexity of the Intensive Care Unit (ICU) management. This paper describes an MFS of ICUs which includes main features that distinguish it from other simulators such as the evolution of patients' health status and the recreation of real discharge and admission processes. The mathematical model is a discrete event simulation model in which different types of patients arrive at the ICU (emergency and scheduled patients). The user manages the simulated ICU by deciding about their admission or diversion and which inpatients are discharged. The analysis of recorded data is used to detect controversial scenarios and to understand how physicians' decisions are made.Publication Open Access Design exploration prior to blade multi-disciplinary optimisation(IOP Publishing, 2018) Echeverría Durá, Fernando; Mallor Giménez, Fermín; San Miguel, Unai; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaThe approach of designing blades as a multi-disciplinary, holistic optimisation implies significant challenges owing to the high complexity of the involved factors such as aerodynamics, elasticity, controller and loads. Moreover, the large number of design variables complicates the intuitive analysis of the relationship between the design variables and responses. This paper presents the design variable exploration prior to blade optimisation, which reveals certain design variable combinations that lead to undesirable dynamic load amplification. Statistical tools, such as multiple logistic regression and fast and frugal decision trees, are applied to identify the conditions causing the phenomenon and predict the possible appearance under new design variable combinations.Publication Open Access Accumulating priority queues versus pure priority queues for managing patients in emergency departments(Elsevier, 2019) Cildoz Esquíroz, Marta; Ibarra, Amaia; Mallor Giménez, Fermín; Institute of Smart Cities - ISCImproving the quality of healthcare in emergency departments (EDs) is at the forefront of many hospital managers’ efforts, as they strive to plan and implement better patient flow strategies. In this paper, a new approach to manage the patient flow in EDs after triage is proposed. The new queue discipline, named accumulative priority queue with finite horizon and denoted by APQ-h, is an extension of the accumulative priority queue (APQ) discipline that considers not only the acuity level of patients and their waiting time but also the stage of the healthcare treatment. APQ disciplines have been studied in the literature from a queueing theory point of view, which requires assumptions rarely found in real EDs, such as homogeneity in the patient arrival pattern and only one service stage. The APQ-h discipline accumulates priority from the point of waiting for the first physician consultation until the moment the waiting time exceeds the upper time limit set to access the physician after the patient's arrival. A recent study shows that a management strategy of this type is applied in practice in several Canadian EDs. The main aim of this paper is to explore the implementation of APQ-h managing policies in a real ED. For this purpose, a simulation model replicating a real ED is developed. This simulation model is also used to obtain the optimal APQ type polices through a simulation-based optimization method that solves a multi-objective and stochastic optimization problem. Arrival to provider time and total waiting time in the ED are considered to be the key ED performance indicators. An extensive computational analysis shows the flexibility of the APQ-h and APQ discipline and their superiority over other pure priority disciplines in a real setting and in a variety of ED scenarios. In addition, no superiority over the APQ discipline is demonstrated. © 2019 The AuthorsPublication Open Access Simulation of household electricity consumption by using functional data analysis(Taylor & Francis, 2018) Mallor Giménez, Fermín; Moler Cuiral, José Antonio; Urmeneta Martín-Calero, Henar; Estadística e Investigación Operativa; Estatistika eta Ikerketa OperatiboaPublication Open Access Introducing the Temporal Distortion Index to perform a bidimensional analysis of renewable energy forecast(Elsevier, 2015-11-21) Frías Paredes, Laura; Mallor Giménez, Fermín; León, Teresa; Gastón Romeo, Martín; Estadística e Investigación Operativa; Estatistika eta Ikerketa Operatiboa; Institute of Smart Cities - ISCWind has been the largest contributor to the growth of renewal energy during the early 21st century. However, the natural uncertainty that arises in assessing the wind resource implies the occurrence of wind power forecasting errors which perform a considerable role in the impacts and costs in the wind energy integration and its commercialization. The main goal of this paper is to provide a deeper insight in the analysis of timing errors which leads to the proposal of a new methodology for its control and measure. A new methodology, based on Dynamic TimeWarping, is proposed to be considered in the estimation of accuracy as attribute of forecast quality. A new dissimilarity measure, the Temporal Distortion Index, among time series is introduced to complement the traditional verication measures found in the literature. Furthermore we provide a bi-criteria perspective to the problem of comparing different forecasts. The methodology is illustrated with several examples including a real case.Publication Open Access Assessing energy forecasting inaccuracy by simultaneously considering temporal and absolute errors(Elsevier, 2017-04-17) Frías Paredes, Laura; Mallor Giménez, Fermín; Gastón Romeo, Martín; León, Teresa; Estadística e Investigación Operativa; Estatistika eta Ikerketa Operatiboa; Institute of Smart Cities - ISCRecent years have seen a growing trend in wind and solar energy generation globally and it is expected that an important percentage of total energy production comes from these energy sources. However, they present inherent variability that implies uctuations in energy generation that are dicult to forecast. Thus, forecasting errors have a considerable role in the impacts and costs of renewable energy integration, management, and commercialization. This study presents an important advance in the task of analyzing prediction models, in particular, in the timing component of prediction error, which improves previous pioneering results. A new method to match time series is dened in order to assess energy forecasting accuracy. This method relies on a new family of step patterns, an essential component of the algorithm to evaluate the temporal distortion index (TDI). This family minimizes the mean absolute error (MAE) of the transformation with respect to the reference series (the real energy series) and also allows detailed control of the temporal distortion entailed in the prediction series. The simultaneous consideration of temporal and absolute errors allows the use of Pareto frontiers as characteristic error curves. Real examples of wind energy forecasts are used to illustrate the results.