Mallor Giménez, Fermín
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Mallor Giménez
First Name
Fermín
person.page.departamento
Estadística, Informática y Matemáticas
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
32 results
Search Results
Now showing 1 - 10 of 32
Publication Open Access Improving input parameter estimation in online pandemic simulation(IEEE, 2021) García de Vicuña Bilbao, Daniel; Mallor Giménez, Fermín; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y MatemáticasSimulation models are suitable tools to represent the complexity and randomness of hospital systems. To be used as forecasting tools during pandemic waves, it is necessary an accurate estimation, by using real-time data, of all input parameters that define the patient pathway and length of stay in the hospital. We propose an estimation method based on an expectation-maximization algorithm that uses data from all patients admitted to the hospital to date. By simulating different pandemic waves, the performance of this method is compared with other two statistical estimators that use only complete data. Results collected to measure the accuracy in the parameters estimation and its influence in the forecasting of necessary resources to provide healthcare to pandemic patients show the better performance of the new estimation method. We also propose a new parameterization of the Gompertz growth model that eases the creation of patient arrival scenarios in the pandemic simulation. © 2021 IEEE.Publication Open Access Necesidad de un enfoque holístico y cuantitativo para el diagnóstico y mejora de los servicios de urgencia hospitalarios(Gobierno de Navarra, 2018) Mallor Giménez, Fermín; Cildoz Esquíroz, Marta; Ibarra, Amaia; Institute of Smart Cities - ISCCarta al editor a raíz del artículo ‘Una propuesta de modelo fisiológico de servicio de urgencias hospitalario. Principios de funcionamiento, tipificación de la saturación y pautas para el rediseño’ y réplica de los autores del mismo.Publication Open Access Safely learning intensive care unit management by using a management flight simulator(Elsevier, 2020) García de Vicuña Bilbao, Daniel; Esparza, Laida; Mallor Giménez, Fermín; Institute of Smart Cities - ISCThis paper presents the development of the first management flight simulator of an intensive care unit (ICU). It allows analyzing the physician decision-making related to the admission and discharge of patients and it can be used as a learning–training tool. The discrete event simulation model developed mimics real admission and discharge processes in ICUs, and it recreates the health status of the patients by using real clinical data (instead of using a single value for the length of stay). This flexible tool, which allows recreating ICUs with different characteristics (number of beds, type of patients that arrive, congestion level…), has been used and validated by ICU physicians and nurses of four hospitals. We show through preliminary results the variability among physicians in the decision-making concerning the dilemma of the last bed, which is dealt in a broad sense: it is not only about how the last available ICU bed is assigned but also about how the physician makes decisions about the admission and discharge of patients as the ICU is getting full. The simulator is freely available on the internet to be used by any interested user (https://emi-sstcdapp.unavarra.es/ICU-simulator).Publication Open Access Early detection of new pandemic waves: control chart and a new surveillance index(Public Library of Science, 2024) Cildoz Esquíroz, Marta; Gastón Romeo, Martín; Frías Paredes, Laura; García de Vicuña Bilbao, Daniel; Azcárate Camio, Cristina; Mallor Giménez, Fermín; Institute of Smart Cities - ISCThe COVID-19 pandemic highlights the pressing need for constant surveillance, updating of the response plan in post-peak periods and readiness for the possibility of new waves of the pandemic. A short initial period of steady rise in the number of new cases is sometimes followed by one of exponential growth. Systematic public health surveillance of the pandemic should signal an alert in the event of change in epidemic activity within the community to inform public health policy makers of the need to control a potential outbreak. The goal of this study is to improve infectious disease surveillance by complementing standardized metrics with a new surveillance metric to overcome some of their difficulties in capturing the changing dynamics of the pandemic. At statistically-founded threshold values, the new measure will trigger alert signals giving early warning of the onset of a new pandemic wave. We define a new index, the weighted cumulative incidence index, based on the daily new-case count. We model the infection spread rate at two levels, inside and outside homes, which explains the overdispersion observed in the data. The seasonal component of real data, due to the public surveillance system, is incorporated into the statistical analysis. Probabilistic analysis enables the construction of a Control Chart for monitoring index variability and setting automatic alert thresholds for new pandemic waves. Both the new index and the control chart have been implemented with the aid of a computational tool developed in R, and used daily by the Navarre Government (Spain) for virus propagation surveillance during post-peak periods. Automated monitoring generates daily reports showing the areas whose control charts issue an alert. The new index reacts sooner to data trend changes preluding new pandemic waves, than the standard surveillance index based on the 14-day notification rate of reported COVID-19 cases per 100,000 population.Publication Open Access Acuity-based rotational patient-to-physician assignment in an emergency department using electronic health records in triage(SAGE, 2023) Cildoz Esquíroz, Marta; Ibarra Bolt, Amaya; Mallor Giménez, Fermín; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISCEmergency department (ED) operational metrics generated by a new acuity-based rotational patient-to-physician assignment (ARPA) algorithm are compared with those obtained with a simple rotational patient assignment (SRPA) system aimed only at an equitable patient distribution. The new ARPA method theoretically guarantees that no two physicians’ assigned patient loads can differ by more than one, either partially (by acuity levels) or in total; whereas SRPA guarantees only the latter. The performance of the ARPA method was assessed in practice in the ED of the main public hospital (Hospital Compound of Navarra) in the region of Navarre in Spain. This ED attends over 140 000 patients every year. Data analysis was conducted on 9,063 ED patients in the SRPA cohort, and 8,892 ED patients in the ARPA cohort. The metrics of interest are related both to patient access to healthcare and physician workload distribution: patient length of stay; arrival-to-provider time; ratio of patients exceeding the APT target threshold; and range of assigned patients across physicians by priority levels. The transition from SRPA to ARPA is associated with improvements in all ED operational metrics. This research demonstrates that ARPA is a simple and useful strategy for redesigning front-end ED processes.Publication Open Access The optimal container selection problem for parts transportation in the automotive sector(Elsevier, 2024) Cildoz Esquíroz, Marta; Mateo, Pedro; Alonso, María Teresa; Parreño, Francisco; Alvarez-Valdes, Ramon; Mallor Giménez, Fermín; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISCToday's automotive factories are essentially assembly plants that receive parts from a vast network of suppliers around the world. Transporting thousands of part types over very long distances is a major logistic problem whose solution is a critical factor in the factory management. In this study we have developed a statistical and optimization methodology implemented in a software tool to help the decision makers select the most appropriate container for each part. A key element is to determine the number of parts that fit in a given container. Two optimization procedures have been developed, depending on the type of part, and used to calculate costs of each container. These costs include not only transporting parts from supplier to factory, but also the costs of handling parts within the factory and returning the empty containers to the supplier.Publication Open Access Cálculo de la distribución del tiempo de vida de componentes mediante autopsia en sistemas binarios aditivos, serie-paralelo y paralelo-serie(Universitat Politècnica de Catalunya, 1997) Mallor Giménez, Fermín; Azcárate Camio, Cristina; Pérez Prados, Antonio; Estadística e Investigación Operativa; Estatistika eta Ikerketa OperatiboaEn este artículo se estudia el problema de determinar la función de distribución del tiempo de vida de las componentes de un sistema binario, a partir del conocimiento de las leyes que rigen el funcionamiento del sistema y del conjunto de componentes que causa su fallo (obtenida mediante autopsia del sistema en el momento de su deterioro). Se presentan los resultados de Meilijson (1981) y Nowik (1990) que proponen un sistema de ecuaciones impíıcito para obtener estas distribuciones. Sin embargo, se observa que este sistema es de muy difícil resolución práctica, por lo que nosotros consideramos un método cuya utilización es más restringida pero más sencilla, y estudiamos su aplicación a sistemas binarios aditivos, serie-paralelo y paralelo-serie.Publication Open Access The problem of the last bed: contextualization and a new simulation framework for analyzing physician decisions(Elsevier, 2019) Azcárate Camio, Cristina; Esparza, Laida; Mallor Giménez, Fermín; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaFaced with a full Intensive Care Unit (ICU), physicians need to decide between turning away a new patient in need of critical care and creating a vacancy by prematurely discharging a current occupant. This dilemma is widely discussed in the medical literature, where the influencing factors are identified, the patient discharge process described and the patient health consequences analyzed. Nevertheless, the existing mathematical models of ICU management practices overlook many of the factors considered by physicians in real-world triage decisions. This paper offers a review of the medical and mathematical literature on patient discharge decisions, and a proposal for a new simulation framework to enable more realistic mathematical modeling of the real-world patient discharge process. Our model includes a) the times at which discharge decisions are made and setup times for patient transfer from the ICU to a general ward and preparation of an ICU bed for an incoming patient, in order to capture the impossibility of an immediate switch of patients; b) advance notice of the number of patients due to arrive from elective surgery requiring intensive postoperative care and potentially triggering the need for early discharges to avoid surgery cancelations; and c) patient health status (to reflect the dependency of physicians’ discharge decisions on health indicators) by modeling length of stay with a phase-type distribution in which a medical meaning is assigned to each state. A simulation-based optimization method is also proposed as a means to obtain optimal discharge decisions as a function of the health status of current patients, the bed occupancy level and the number of planned arrivals from elective surgery over the following days. Optimal decisions should strike a balance between patient rejection and LoS reduction. This new simulation framework generates an optimal discharge policy, which closely resembles real decision-making under a cautious discharge policy, where the frequency of early discharge increases with the ICU occupancy level. This is a contrast with previous simulation models, which consider only the triage of the last bed, disregarding the pressures on physicians faced with high bed occupancy levels.Publication Open Access Police as first reponders improve out-of-hospital cardiac arrest survival(BMC, 2023) Jean Louis, Clint; Cildoz Esquíroz, Marta; Echarri Sucunza, Alfredo; Beaumont, Carlos; Mallor Giménez, Fermín; Greif, Robert; Baigorri Iguzquiaguirre, Miguel; Reyero Díez, Diego; Ciencias de la Salud; Osasun Zientziak; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaBackground: Police forces are abundant circulating and might arrive before the emergency services to Out-of-Hospital-Cardiac-Arrest victims. If properly trained, they can provide basic life support and early defibrillation within minutes, probably increasing the survival of the victims. We evaluated the impact of local police as first responders on the survival rates of out-of-hospital cardiac arrest victims in Navarra, Spain, over 7 years. Methods: A retrospective analysis of an ongoing Out-of-Hospital Cardiac registry to compare the characteristics and survival of Out-of-Hospital-Cardiac-Arrest victims attended to in first place by local police, other first responders, and emergency ambulance services between 2014 and 2020. Results: Of 628 cases, 73.7% were men (aged 68.9 ± 15.8), and 26.3% were women (aged 65,0 ± 14,7 years, p < 0.01). Overall survival of patients attended to by police in the first place was 17.8%, other first responders 17.4% and emergency services 13.5% with no significant differences (p > 0.1). Time to initiating cardiopulmonary resuscitation is significant for survival. When police arrived first and started CPR before the emergency services, they arrived at a mean of 5.4 ± 3 min earlier (SD = 3.10). This early police intervention showed an increase in the probability of survival by 10.1%. Conclusions: The privileged location and the sole amount of personnel of local police forces trained in life support and their fast delivery of defibrillators as first responders can improve the survival of out-of-hospital cardiac arrest victims.Publication Open Access A GRASP-based algorithm for solving the emergency room physician scheduling problem(Elsevier, 2021) Cildoz Esquíroz, Marta; Mallor Giménez, Fermín; Mateo, Pedro; Institute of Smart Cities - ISCThis paper addresses a physician scheduling problem in an Emergency Room (ER) requiring a long-term work calendar to allocate work days and types of shift among all the doctors. The mathematical model is created without simplifications, using the real calendar, including holidays. This precludes the possibility of cyclic-type solutions, and involves numerous and varied constraints (demand, workload, ergonomics, fairness, etc.). An effective solution to this very difficult practical problem cannot be obtained, for large instances, with exact solution methods. We formulate a mathematical representation of a real-world ER physician scheduling problem featuring a hybrid algorithm combining continuous linear programming with a greedy randomized adaptive search procedure (GRASP). Linear programming is used to model a general physician-demand covering problem, where the solution is used to guide the construction phase of the GRASP, to obtain initial full schedules for subsequent improvement by iterative application of Variable Neighborhood Descent Search (VNDS) and Network Flow Optimization (NFO). A computational study shows the superiority of our approach over the Integer Linear Programming method in a set of instances of varying size and difficulty inspired by a real setting. The methodology is embedded in a software tool for generating one-year-ahead physician schedules for a local ER. These solutions, which are now in use, outperform the manually-created schedules used previously. © 2021 Elsevier B.V.