Mallor Giménez, Fermín

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Mallor Giménez

First Name

Fermín

person.page.departamento

Estadística, Informática y Matemáticas

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 3 of 3
  • PublicationOpen Access
    Accumulating priority queues versus pure priority queues for managing patients in emergency departments
    (Elsevier, 2019) Cildoz Esquíroz, Marta; Ibarra, Amaia; Mallor Giménez, Fermín; Institute of Smart Cities - ISC
    Improving the quality of healthcare in emergency departments (EDs) is at the forefront of many hospital managers’ efforts, as they strive to plan and implement better patient flow strategies. In this paper, a new approach to manage the patient flow in EDs after triage is proposed. The new queue discipline, named accumulative priority queue with finite horizon and denoted by APQ-h, is an extension of the accumulative priority queue (APQ) discipline that considers not only the acuity level of patients and their waiting time but also the stage of the healthcare treatment. APQ disciplines have been studied in the literature from a queueing theory point of view, which requires assumptions rarely found in real EDs, such as homogeneity in the patient arrival pattern and only one service stage. The APQ-h discipline accumulates priority from the point of waiting for the first physician consultation until the moment the waiting time exceeds the upper time limit set to access the physician after the patient's arrival. A recent study shows that a management strategy of this type is applied in practice in several Canadian EDs. The main aim of this paper is to explore the implementation of APQ-h managing policies in a real ED. For this purpose, a simulation model replicating a real ED is developed. This simulation model is also used to obtain the optimal APQ type polices through a simulation-based optimization method that solves a multi-objective and stochastic optimization problem. Arrival to provider time and total waiting time in the ED are considered to be the key ED performance indicators. An extensive computational analysis shows the flexibility of the APQ-h and APQ discipline and their superiority over other pure priority disciplines in a real setting and in a variety of ED scenarios. In addition, no superiority over the APQ discipline is demonstrated. © 2019 The Authors
  • PublicationOpen Access
    Acuity-based rotational patient-to-physician assignment in an emergency department using electronic health records in triage
    (SAGE, 2023) Cildoz Esquíroz, Marta; Ibarra Bolt, Amaya; Mallor Giménez, Fermín; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC
    Emergency department (ED) operational metrics generated by a new acuity-based rotational patient-to-physician assignment (ARPA) algorithm are compared with those obtained with a simple rotational patient assignment (SRPA) system aimed only at an equitable patient distribution. The new ARPA method theoretically guarantees that no two physicians’ assigned patient loads can differ by more than one, either partially (by acuity levels) or in total; whereas SRPA guarantees only the latter. The performance of the ARPA method was assessed in practice in the ED of the main public hospital (Hospital Compound of Navarra) in the region of Navarre in Spain. This ED attends over 140 000 patients every year. Data analysis was conducted on 9,063 ED patients in the SRPA cohort, and 8,892 ED patients in the ARPA cohort. The metrics of interest are related both to patient access to healthcare and physician workload distribution: patient length of stay; arrival-to-provider time; ratio of patients exceeding the APT target threshold; and range of assigned patients across physicians by priority levels. The transition from SRPA to ARPA is associated with improvements in all ED operational metrics. This research demonstrates that ARPA is a simple and useful strategy for redesigning front-end ED processes.
  • PublicationOpen Access
    Coping with stress in emergency department physicians through improved patient-flow management
    (Elsevier, 2020) Cildoz Esquíroz, Marta; Ibarra, Amaia; Mallor Giménez, Fermín; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y Matemáticas
    This paper provides a method for the real-time monitoring of job stress in emergency department (ED) physicians. It is implemented in a Decision Support System (DSS) designed for patient-to-physician assignment after triage. Our concept of job stress includes not only the workload but also time pressure and uncertainty. A job stress function is estimated based on the consensus views of ED physicians obtained through a novel methodology involving stress factor analysis, questionnaire design, and the statistical analysis of expert opinions. The resulting stress score enables the assessment of job stress using workload data from the ED physicians’ whiteboard. These data can be used for the real-time measurement and monitoring of ED physician job stress in a stochastic and dynamic environment, which is the main novelty of this method as compared to previous workload and stress measurement proposals. A further advantage of this methodology is that it is general enough to be adapted to physician job stress monitoring in any ED. The use of the DSS for ED patient-flow management reduces job stress and spreads it more evenly among the whole team of physicians, while also improving other important ED performance measures such as arrival-to-provider time and the percentage of compliance with patient waiting time targets. A case study illustrates the application of the methodology for the construction of a stress-score, the monitoring of physician stress levels, and ED patient-flow management.