Person:
Ramírez Nasto, Lucía

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Ramírez Nasto

First Name

Lucía

person.page.departamento

Agronomía, Biotecnología y Alimentación

ORCID

0000-0002-0023-4240

person.page.upna

425

Name

Search Results

Now showing 1 - 10 of 37
  • PublicationOpen Access
    Comparative genomics of Coniophora olivacea reveals different patterns of genome expansion in Boletales
    (BioMed Central, 2017) Castanera Andrés, Raúl; Pérez Garrido, María Gumersinda; López Varas, Leticia; Amselem, Joëlle; LaButti, Kurt; Singan, Vasanth; Lipzen, Anna; Haridas, Sajeet; Barry, Kerrie; Grigoriev, Igor V.; Pisabarro de Lucas, Gerardo; Ramírez Nasto, Lucía; Producción Agraria; Nekazaritza Ekoizpena; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Background: Coniophora olivacea is a basidiomycete fungus belonging to the order Boletales that produces brown-rot decay on dead wood of conifers. The Boletales order comprises a diverse group of species including saprotrophs and ectomycorrhizal fungi that show important differences in genome size. Results: In this study we report the 39.07-megabase (Mb) draft genome assembly and annotation of C. olivacea. A total of 14,928 genes were annotated, including 470 putatively secreted proteins enriched in functions involved in lignocellulose degradation. Using similarity clustering and protein structure prediction we identified a new family of 10 putative lytic polysaccharide monooxygenase genes. This family is conserved in basidiomycota and lacks of previous functional annotation. Further analyses showed that C. olivacea has a low repetitive genome, with 2.91% of repeats and a restrained content of transposable elements (TEs). The annotation of TEs in four related Boletales yielded important differences in repeat content, ranging from 3.94 to 41.17% of the genome size. The distribution of insertion ages of LTRretrotransposons showed that differential expansions of these repetitive elements have shaped the genome architecture of Boletales over the last 60 million years. Conclusions: Coniophora olivacea has a small, compact genome that shows macrosynteny with Coniophora puteana. The functional annotation revealed the enzymatic signature of a canonical brown-rot. The annotation and comparative genomics of transposable elements uncovered their particular contraction in the Coniophora genera, highlighting their role in the differential genome expansions found in Boletales species.
  • PublicationOpen Access
    Genetic linkage map of the edible basidiomycete Pleurotus ostreatus
    (American Society for Microbiology, 2000) Larraya Reta, Luis María; Pérez Garrido, María Gumersinda; Ritter, Enrique; Pisabarro de Lucas, Gerardo; Ramírez Nasto, Lucía; Producción Agraria; Nekazaritza Ekoizpena; Gobierno de Navarra / Nafarroako Gobernua; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    We have constructed a genetic linkage map of the edible basidiomycete Pleurotus ostreatus (var. Florida). The map is based on the segregation of 178 random amplified polymorphic DNA and 23 restriction fragment length polymorphism markers; four hydrophobin, two laccase, and two manganese peroxidase genes; both mating type loci; one isozyme locus (est1); the rRNA gene sequence; and a repetitive DNA sequence in a population of 80 sibling monokaryons. The map identifies 11 linkage groups corresponding to the chromosomes of P. ostreatus, and it has a total length of 1,000.7 centimorgans (cM) with an average of 35.1 kbp/cM. The map shows a high correlation (0.76) between physical and genetic chromosome sizes. The number of crossovers observed per chromosome per individual cell is 0.89. This map covers nearly the whole genome of P. ostreatus.
  • PublicationOpen Access
    Quantitative trait loci controlling vegetative growth rate in the edible basidiomycete Pleurotus ostreatus
    (American Society for Microbiology, 2002) Larraya Reta, Luis María; Idareta Olagüe, Eneko; Arana, Dani; Ritter, Enrique; Pisabarro de Lucas, Gerardo; Ramírez Nasto, Lucía; Producción Agraria; Nekazaritza Ekoizpena; Gobierno de Navarra / Nafarroako Gobernua; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Mycelium growth rate is a quantitative characteristic that exhibits continuous variation. This trait has applied interest, as growth rate is correlated with production yield and increased advantage against competitors. In this work, we studied growth rate variation in the edible basidiomycete Pleurotus ostreatus growing as monokaryotic or dikaryotic mycelium on Eger medium or on wheat straw. Our analysis resulted in identification of several genomic regions (quantitative trait loci [QTLs]) involved in the control of growth rate that can be mapped on the genetic linkage map of this fungus. In some cases monokaryotic and dikaryotic QTLs clustered at the same map position, indicating that there are principal genomic areas responsible for growth rate control. The availability of this linkage map of growth rate QTLs can help in the design of rational strain breeding programs based on genomic information.
  • PublicationOpen Access
    Glucose counteracts wood-dependent induction of lignocellulolytic enzyme secretion in monokaryon and dikaryon submerged cultures of the white-rot basidiomycete Pleurotus ostreatus
    (Nature Research, 2020) Alfaro Sánchez, Manuel; Majcherczyk, A.; Kües, Ursula; Ramírez Nasto, Lucía; Pisabarro de Lucas, Gerardo; Institute for Multidisciplinary Research in Applied Biology - IMAB; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    The secretome complexity and lignocellulose degrading capacity of Pleurotus ostreatus monokaryons mkPC9 and mkPC15 and mated dikaryon dkN001 were studied in submerged liquid cultures containing wood, glucose, and wood plus glucose as carbon sources. The study revealed that this white-rot basidiomycete attacks all the components of the plant cell wall. P. ostreatus secretes a variety of glycoside hydrolases, carbohydrate esterases, and polysaccharide lyases, especially when wood is the only carbon source. The presence of wood increased the secretome complexity, whereas glucose diminished the secretion of enzymes involved in cellulose, hemicellulose and pectin degradation. In contrast, the presence of glucose did not influence the secretion of redox enzymes or proteases, which shows the specificity of glucose on the secretion of cellulolytic enzymes. The comparison of the secretomes of monokaryons and dikaryons reveals that secretome complexity is unrelated to the nuclear composition of the strain.
  • PublicationOpen Access
    Isolation, molecular characterization and location of telomeric sequences of the basidiomycete Pleurotus ostreatus var. florida
    (Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, 2006) Pérez Garrido, María Gumersinda; Pisabarro de Lucas, Gerardo; Ramírez Nasto, Lucía; Producción Agraria; Nekazaritza Ekoizpena
    The white rot fungus Pleurotus ostreatus is an edible basidiomycete of increasing biotechnological interest due to its ability to degrade both wood and chemicals related to lignin degradation products. Telomeres are specialized structures at the end of all eukaryotic chromosomes. Ensure chromosome stability and protect the ends from degradation and from fusing with other chromosomes. Telomeres sequences are extraordinary highly conserved in evolution. The loss of telomeric repeats triggers replicative senescence in cells. For identification of restriction telomeric fragments in a previously described linkage map of Pleurotus ostreatus var. florida (Larraya et al., 2000), dikaryotic and eighty monokaryotic genomic DNAs were digested with diferents restriction enzymes (BamHI, BglII, HindIII, EcoRI, PstI, SalI, XbaI and XhoI) electrophoresed and transferred to nylon membranes. Numerous polymorphic bands were observed when membranes were hibridized with human telomericd probe (TTAGGG)132 (heterologous probe). Telomeric restriction fragments were genetically mapped to a previously described linkage map of Pleurotus ostreatus var.florida, using RFLPs identified by a human telomeric probe (tandemly repeating TTAGGG hexanucleotide). Segregation of each telomeric restriction fragment was recorded as the presence vs. absence of a hibridizing band. Segregation data for seventy three telomeric restriction fragments was used as an input table to be analysed as described by Ritter et al. (1990) and by Ritter and Salamini (1996) by using the MAPRF program software. Seventeen out of twenty two telomeres were identified. Telomere and telomere-associated (TA) DNA sequences of the basidiomycete Pleurotus ostreatus were isolated by using a modified version of single- specific-primer polymerase chain reaction (SSP-PCR) technique (Sohapal et al., 2000). Telomeres of Pleurotus ostreatus contain at least twenty five copies of non-coding tandemly repeated sequence (TTAGGG).
  • PublicationOpen Access
    Metatranscriptomics sheds light on the links between the functional traits of fungal guilds and ecological processes in forest soil ecosystems
    (Blackwell Scientific Publications Ltd, 2023) Auer, Lucas; Buée, Marc; Fauchery, Laure; Lombard, Vincent; Barry, Kerry W.; Clum, Alicia; Copeland, Alex; Daum, Chris; LaButti, Kurt; Singan, Vasanth; Yoshinaga, Yuko; Martineau, Christine; Castillo Martínez, Federico; Alfaro Sánchez, Manuel; Imbert Rodríguez, Bosco; Ramírez Nasto, Lucía; Castanera Andrés, Raúl; Pisabarro de Lucas, Gerardo; Finlay, Roger; Lindahl, Björn D.; Olson, Ake; Séguin, Armand; Kohler, Annegret; Henrissat, Bernard; Grigoriev, Igor V.; Martin, Francis M.; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura; Institute for Multidisciplinary Research in Applied Biology - IMAB
    Soil fungi belonging to different functional guilds, such as saprotrophs, pathogens, and mycorrhizal symbionts, play key roles in forest ecosystems. To date, no study has compared the actual gene expression of these guilds in different forest soils. We used metatranscriptomics to study the competition for organic resources by these fungal groups in boreal, temperate, and Mediterranean forest soils. Using a dedicated mRNA annotation pipeline combined with the JGI MycoCosm database, we compared the transcripts of these three fungal guilds, targeting enzymes involved in C- and N mobilization from plant and microbial cell walls. Genes encoding enzymes involved in the degradation of plant cell walls were expressed at a higher level in saprotrophic fungi than in ectomycorrhizal and pathogenic fungi. However, ectomycorrhizal and saprotrophic fungi showed similarly high expression levels of genes encoding enzymes involved in fungal cell wall degradation. Transcripts for N-related transporters were more highly expressed in ectomycorrhizal fungi than in other groups. We showed that ectomycorrhizal and saprotrophic fungi compete for N in soil organic matter, suggesting that their interactions could decelerate C cycling. Metatranscriptomics provides a unique tool to test controversial ecological hypotheses and to better understand the underlying ecological processes involved in soil functioning and carbon stabilization.
  • PublicationOpen Access
    Molecular characterization of A cellobiohydrolase gene family in the fungus Pleurotus ostreatus
    (Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, 2006) Eizmendi Goicoechea, Arantza; Sannia, Giovanni; Ramírez Nasto, Lucía; Pisabarro de Lucas, Gerardo; Producción Agraria; Nekazaritza Ekoizpena
    Cellulose is the most abundant biological polymer on Earth. Its chemical composition consists of D-glucose units linked by β-1,4- glycosidic bonds forming linear polymeric chains with a reducing and a non-reducing end. Cellulose chains may either adhere to each other, via hydrophobic and van der Waals interactions, forming crystalline structures or remain more loosely packaged (amorphous cellulose). Consequently, the physical structure and morphology of native cellulose is complex and not uniform. Biological degradation of cellulose depends on the action of three types of enzymes: endoglucanases (E.C.3.2.1.4), cellobiohydrolases (E.C.3.2.1.91) and β-glucosidases (E.C.3.2.1.21). All them hydrolyse β-1,4-glycosidic bonds but they differ on the substrate specificity. Endoglucanases hydrolyse the amorphous regions of the cellulose fibbers generating new reducing and non-reducing ends, cellobiohydrolases attack the molecule ends yielding cellobiose units, and β-glucosidases hydrolyse cellobiose molecules yielding glucose. Cellobiohydrolases can be classified into two groups: type I (CBHI) and type II (CBHII), each having opposite chain-end specificities. CBHI prefer the reducing ends while CBHII act at non-reducing ends. By the screening of a genomic library from the basidiomycete Pleurotus ostreatus var. florida, we have isolated five cbhI genes, named cbhI1, cbhI2, cbhI3, cbhI4 and cbhI5, proving the occurrence of a multigenic family coding for this enzymatic activity. Using this sequences as probe, it has been possible to know the conditions in which are expressed those genes. This has allowed the synthesis of the each gene cDNA and, by comparison of this sequence with the corresponding genomic sequence, the characterization of their structure. On the other hand, using the RFLP technique and a progeny of 80 monokaryons derived from the dikaryon N001, the five genes have been mapped on the linkage map of P. ostreatus var. florida mapping the cbhI1 to the chromosome IV and the others to the chromosome VI.
  • PublicationOpen Access
    Comparative genomics of Ceriporiopsis subvermispora and Phanerochaete chrysosporium provide insight into selective ligninolysis
    (National Academy of Sciences, 2012) Fernández Fueyo, Elena; Ruiz Dueñas, Francisco J.; Ferreira, Patricia; Floudas, Dimitrios; Lavín Trueba, José Luis; Oguiza Tomé, José Antonio; Pérez Garrido, María Gumersinda; Pisabarro de Lucas, Gerardo; Ramírez Nasto, Lucía; Santoyo Santos, Francisco; Producción Agraria; Nekazaritza Ekoizpena
    Efficient lignin depolymerization is unique to the wood decay basidiomycetes, collectively referred to as white rot fungi. Phanerochaete chrysosporium simultaneously degrades lignin and cellulose, whereas the closely related species, Ceriporiopsis subvermispora, also depolymerizes lignin but may do so with relatively little cellulose degradation. To investigate the basis for selective ligninolysis, we conducted comparative genome analysis of C. subvermispora and P. chrysosporium. Genes encoding manganese peroxidase numbered 13 and five in C. subvermispora and P. chrysosporium, respectively. In addition, the C. subvermispora genome contains at least seven genes predicted to encode laccases, whereas the P. chrysosporium genome contains none. We also observed expansion of the number of C. subvermispora desaturase-encoding genes putatively involved in lipid metabolism. Microarray-based transcriptome analysis showed substantial up-regulation of several desaturase and MnP genes in wood-containing medium. MS identified MnP proteins in C. subvermispora culture filtrates, but none in P. chrysosporium cultures. These results support the importance of MnP and a lignin degradation mechanism whereby cleavage of the dominant nonphenolic structures is mediated by lipid peroxidation products. Two C. subvermispora genes were predicted to encode peroxidases structurally similar to P. chrysosporium lignin peroxidase and, following heterologous expression in Escherichia coli, the enzymes were shown to oxidize high redox potential substrates, but not Mn2+. Apart from oxidative lignin degradation, we also examined cellulolytic and hemicellulolytic systems in both fungi. In summary, the C. subvermispora genetic inventory and expression patterns exhibit increased oxidoreductase potential and diminished cellulolytic capability relative to P. chrysosporium.
  • PublicationOpen Access
    Identification and functional characterisation of ctr1, a Pleurotus ostreatus gene coding for a copper transporter
    (Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, 2006) Peñas Parrila, María Manuela; Azparren Larraya, María Goretti; Domínguez, A.; Sommer, H.; Ramírez Nasto, Lucía; Pisabarro de Lucas, Gerardo; Producción Agraria; Nekazaritza Ekoizpena
    Copper homeostasis is primordial for life maintenance and especially relevant for ligning-degrading fungi whose phenol-oxidase enzymes depend on this micronutrient for their activity. In this paper we report the identification of a gene (ctr1), coding for a copper transporter in the white rot fungus Pleurotus ostreatus, in a cDNA library constructed from four-days old vegetative mycelium growing in submerged culture. The results presented here indicate that: (1) ctr1 functionally complements the respiratory deficiency of a yeast mutant defective in copper transport supporting the transport activity of the Ctr1 protein; (2) ctr1 transcription is detected in all P. ostreatus developmental stages (with exception of lamellae) and is negatively regulated by the presence of copper in the culture media; (3) ctr1 is a single copy gene that maps to P. ostreatus linkage group III; and (4) the regulatory sequence elements found in the promoter of ctr1 agree with those found in other copper related genes described in other systems. These results provide the first description of a copper transporter in this white rot fungus and open the possibility of further studies on copper metabolism in higher basidiomyetes.
  • PublicationOpen Access
    Nutritional value of protein from vegetative mycelia of edible mushroom Pleurotus ostreatus
    (Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, 2006) Parada Albarracín, Julián Andrés; Urdaneta, Elena; Marzo Pérez, Florencio; Ramírez Nasto, Lucía; Pisabarro de Lucas, Gerardo; Producción Agraria; Nekazaritza Ekoizpena; Ciencias del Medio Natural; Natura Ingurunearen Zientziak
    The present work was designed to study the effects of supplementation a control diet with P. ostreatus mycelium for evaluation a nutritional value of mycoprotein and possible cholesterol lowering.