García Solano, Miguel

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

García Solano

First Name

Miguel

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 18
  • PublicationOpen Access
    A tool for the performance evaluation and failure detection of Amareleja PV plant (Acciona) from SCADA
    (2015) Muñoz Escribano, Mikel; Parra Laita, Íñigo de la; García Solano, Miguel; Marcos Álvarez, Javier; Pérez, Miguel; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISC; Ingeniería Eléctrica y Electrónica
    This paper describes a tool developed for the performance evaluation and failure detection in a 45.6 MWp PV plant installed by the company Acciona in Amareleja (Portugal). The paper describes the PV plant configuration and its SCADA (Supervisory Control And Data Acquisition), the measured variables and the main functionalities of the software. Some of these functionalities are the automatic and accurate PSTC (Power under standard test conditions1) calculation for each generator and for the whole PV Plant, the reference production that would be delivered by the PV plant assuming a 100% availability, the hierarchy of SCADA alarms, the detection of long-term trends and degradation in PV generators, possible hidden problems in the different equipment and systems composing the PV plant, etc. This tool entered into operation in 2011 and is working properly since then.
  • PublicationOpen Access
    Outdoor performance of a CdTe based PV generator during 5 years of operation
    (IEEE, 2022) Guerra Menjívar, Moisés Roberto; Parra Laita, Íñigo de la; Marcos Álvarez, Javier; García Solano, Miguel; Marroyo Palomo, Luis; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    Together with the huge growth of the traditional crystalline silicon (Si-x) PV manufacturers, other thin-film solar cells have also emerged such as cadmium telluride (CdTe) manufacturers. They are characterized by the fact that they were created to reduce costs and by the scarcity of silicon, from which the rest of the modules are made. Despite they need more space to generate the same amount of energy as crystalline modules, their price is supposed to be much lower, and argue that they have a better performance at high temperatures. However, real comparisons between the outdoor performance of CdTe and Si-x modules have been scarcely addressed in the literature. This paper provides a comparison under real operating conditions of a CdTe photovoltaic generator versus a conventional silicon generator during 5 years of operation in a mid-latitude area, identifying the causes of the differences observed.
  • PublicationOpen Access
    Control strategies to smooth short-term power fluctuations in large photovoltaic plants using battery storage systems
    (MDPI, 2014) Marcos Álvarez, Javier; Parra Laita, Íñigo de la; García Solano, Miguel; Marroyo Palomo, Luis; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    The variations in irradiance produced by changes in cloud cover can cause rapid fluctuations in the power generated by large photovoltaic (PV) plants. As the PV power share in the grid increases, such fluctuations may adversely affect power quality and reliability. Thus, energy storage systems (ESS) are necessary in order to smooth power fluctuations below the maximum allowable. This article first proposes a new control strategy (step-control), to improve the results in relation to two state-of-the-art strategies, ramp-rate control and moving average. It also presents a method to quantify the storage capacity requirements according to the three different smoothing strategies and for different PV plant sizes. Finally, simulations shows that, although the moving-average (MA) strategy requires the smallest capacity, it presents more losses (2–3 times more) and produces a much higher number of cycles over the ESS (around 10 times more), making it unsuitable with storage technologies as lithium-ion. The step-control shown as a better option in scenery with exigent ramp restrictions (around 2%/min) and distributed generation against the ramp-rate control in all ESS key aspects: 20% less of capacity, up to 30% less of losses and a 40% less of ageing. All the simulations were based on real PV production data, taken every 5 s in the course of one year (2012) from a number of systems with power outputs ranging from 550 kW to 40 MW.
  • PublicationOpen Access
    Long-term degradation rate of crystalline silicon PV modules at commercial PV plants: an 82-MWp assessment over 10 years
    (Wiley, 2021) Pascual Miqueleiz, Julio María; Martínez Moreno, Francisco; García Solano, Miguel; Marcos Álvarez, Javier; Marroyo Palomo, Luis; Lorenzo Pigueiras, Eduardo; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    Due to high competitiveness in the PV sector, despite the low degradation rate of crystalline silicon PV modules (below 0.5%/year), it is still important for utilities to know its actual value due to its impact on energy yield and hence, profitability, over the lifetime of a PV plant. However, uncertainties related to both the influence of downtime periods due to problems that may appear under normal operation of a commercial PV plant and to the measurement of degradation rates at PV plant level make this a challenging task. In order to obtain a significant value, in this paper, three measuring methods with different uncertainty sources are used for 82 MWp of PV modules on different locations in Spain and Portugal over 10 years. According to the different methods used and PV plants analyzed, excluding PV plants with problems, a range of degradation rates between 0.01 and 0.47%/year has been found. The overall average value observed is 0.27%/year. The findings of this work have also revealed the great importance of good operation and maintenance practices in order to keep overall low degradation rates.
  • PublicationOpen Access
    Early development of the root-knot nematode Meloidogyne incognita
    (BioMed Central, 2016) Calderón Urrea, Alejandro; Vanholme, Bartel; Vangestel, Sandra; Kane, Saben M.; Bahaji, Abdellatif; Pha, Khavong; García Solano, Miguel; Snider, Alyssa; Gheysen, Godelieve; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua
    Background: Detailed descriptions of the early development of parasitic nematodes are seldom available. The embryonic development of the plant-parasitic nematode Meloidogyne incognita was studied, focusing on the early events. Results: A fixed pattern of repeated cell cleavages was observed, resulting in the appearance of the six founder cells 3 days after the first cell division. Gastrulation, characterized by the translocation of cells from the ventral side to the center of the embryo, was seen 1 day later. Approximately 10 days after the first cell division a rapidly elongating two-fold stage was reached. The fully developed second stage juvenile hatched approximately 21 days after the first cell division. Conclusions: When compared to the development of the free-living nematode Caenorhabditis elegans, the development of M. incognita occurs approximately 35 times more slowly. Furthermore, M. incognita differs from C. elegans in the order of cell divisions, and the early cleavage patterns of the germ line cells. However, cytoplasmic ruffling and nuclear migration prior to the first cell division as well as the localization of microtubules are similar between C. elegans and M. incognita.
  • PublicationOpen Access
    Gain of bifacial PV modules on horizontal single-axis trackers in desert climates
    (IEEE, 2024-11-15) Parra Laita, Íñigo de la; García Solano, Miguel; Marcos Álvarez, Javier; Marroyo Palomo, Luis; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, PJUPNA2023-11389
    Over the last few years, the demand for bifacial PV modules has continuously increased. However, there are still some aspects regarding their outdoor performance under real conditions that need further investigation. This paper analyzes the bifacial PV modules gain obtained over one year in a horizontally tracked PV power plant located in the Atacama Desert, Chile. The study was carried out over the course of a year for two different types of trackers: a standard tracker as used in the rest of the plant and a tracker that, according to the manufacturer, is specially designed to maximize the production of the bifacial modules. The results show that bifacial PV modules with a conventional tracker are able to gain approximately a 5% in terms of both radiation and production whereas the bifacial PV modules mounted on the special bifacial tracker can gain up to 5.8% and 6.1 % respectively.
  • PublicationOpen Access
    Analysis of polyamide and fluoropolymer backsheets: Degradation and insulation failure in field-aged photovoltaic modules
    (John Wiley & Sons, 2022) Pascual Miqueleiz, Julio María; García Solano, Miguel; Marcos Álvarez, Javier; Marroyo Palomo, Luis; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Durability of photovoltaic (PV) modules is of great concern not only from the point of view of cost-effectiveness but also from the point of view of safety and sustainability. The backsheet of a PV module is one of the most critical parts of the PV module from the point of view of protection and also one of the most important sources of PV modules' failure; hence, it is of great importance to understand its different forms of failure. In this paper we analyze the case of an 8-MW PV plant, which had suffered a rapid degradation of their PV modules' backsheets. The case is especially relevant as all the PV modules are from the same model and manufacturer but with different backsheet materials (polyamide and fluoropolymer) and different times of exposure: on one hand, all PV modules originally installed in the plant (i.e., 6 years under operation when tested), and also, extra modules that had been stored indoors for replacement and had been mounted in the plant for less than 1 year when tested, serving as reference modules. In this paper we present the signs of degradation of these PV modules after different times of exposure under real operation using different on-field and laboratory tests. We propose different techniques for rapid diagnosis of backsheet degradation so that the problem can be detected at a very early stage, before it results in major energy losses or in safety issues.
  • PublicationOpen Access
    On the on-site measurement of the degradation rate of crystalline silicon PV modules at plant level
    (IEEE, 2018) Pascual Miqueleiz, Julio María; Berrueta Irigoyen, Alberto; Marcos Álvarez, Javier; García Solano, Miguel; Marroyo Palomo, Luis; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    This paper proposes a method for measuring the degradation rate of crystalline silicon PV modules at plant level in two different ways as a form of verification. As actual levels of degradation rate have been observed to be as low as 0.2%/a, the uncertainties make it difficult to measure this value accurately at plant level. However, despite the low value, it is still important to know the actual degradation rate due to its impact on energy yield. In this paper, two ways of measuring the degradation rate at plant level are proposed. These two methods, with different uncertainty sources, are proposed to be used jointly in order to have a better approach to the real value. Finally, an example of measurement in a 1.78 MW PV plant is presented.
  • PublicationOpen Access
    Ramp-rate control in large PV plants: battery vs. short-term forecast
    (IEEE, 2018) Marcos Álvarez, Javier; Parra Laita, Íñigo de la; Cirés Buey, Eulalia; Wang, Guang Chao; García Solano, Miguel; Marroyo Palomo, Luis; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC
    The changeability in the power produced by utility-scale PV plants caused by shadows due to passing clouds can compromise grid stability. Traditionally, some kind of energy storage systems (ESS) is proposed as the solution to reduce power variations below the limits imposed by new grid codes regulations. However, recent short-term forecast sources open the door to control the variability without batteries, using only inverter limitation. This option entails some energy curtailment losses that has not been yet addressed. This paper quantifies these losses for the first time using a meaningful database of 5 s one year data for a 38.5 MW PV plant in a perfect forecast scenery. Finally, we compare the economic cost of installing a lithium-ion battery vs. the inverter limitation solution. The results obtained indicate that battery-less strategies must not be neglected for ramp-rate control, since they can be more cost-effective using perfect forecast for any ramp value.
  • PublicationOpen Access
    Analysis of a CIS based PV generator versus a multicrystalline generator under outdoor long-term exposure
    (IEEE, 2021) Parra Laita, Íñigo de la; Guerra Menjívar, Moisés Roberto; Marcos Álvarez, Javier; García Solano, Miguel; Marroyo Palomo, Luis; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    The worldwide growth of the PV market has been almost exponential during the last years. Together with conventional crystalline (c-Si) PV modules, “new” commercially available PV technologies such as copper indium selenide (CIS) based solar cells have appeared achieving a similar efficiency comparable to c-Si at similar production cost. In addition to the use of cheaper materials, CIS solar cells manufacturers claim some enhancements such as lower temperature coefficient or higher absorption of diffuse light that achieve to reduce the cost of electrical energy. Although several papers deal with this topic, little is known about real comparisons between CIS technology and conventional crystalline at a PV generator level with real test conditions. This paper analyses the in-field performance and degradation of a commercially available CIS solar based PV generator compared to a conventional c-Si one during four years of operation attributing the differences observed to the possible factors that can influence in both technologies.