Rodríguez Falces, Javier
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Rodríguez Falces
First Name
Javier
person.page.departamento
Ingeniería Eléctrica, Electrónica y de Comunicación
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
29 results
Search Results
Now showing 1 - 10 of 29
Publication Open Access M-wave changes caused by brief voluntary and stimulated isometric contractions(Springer, 2023) Rodríguez Falces, Javier; Malanda Trigueros, Armando; Navallas Irujo, Javier; Place, Nicolas; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaIntroduction Under isometric conditions, the increase in muscle force is accompanied by a reduction in the fbers’ length. The efects of muscle shortening on the compound muscle action potential (M wave) have so far been investigated only by computer simulation. This study was undertaken to assess experimentally the M-wave changes caused by brief voluntary and stimulated isometric contractions. Methods Two diferent methods of inducing muscle shortening under isometric condition were adopted: (1) applying a brief (1 s) tetanic contraction and (2) performing brief voluntary contractions of diferent intensities. In both methods, supramaximal stimulation was applied to the brachial plexus and femoral nerves to evoke M waves. In the frst method, electrical stimulation (20 Hz) was delivered with the muscle at rest, whereas in the second, stimulation was applied while participants performed 5-s stepwise isometric contractions at 10, 20, 30, 40, 50, 60, 70, and 100% MVC. The amplitude and duration of the frst and second M-wave phases were computed. Results The main fndings were: (1) on application of tetanic stimulation, the amplitude of the M-wave frst phase decreased (~10%, P<0.05), that of the second phase increased (~50%, P<0.05), and the M-wave duration decreased (~20%, P<0.05) across the frst fve M waves of the tetanic train and then plateaued for the subsequent responses; (2) when superimposing a single electrical stimulus on muscle contractions of increasing forces, the amplitude of the M-wave frst phase decreased (~20%, P<0.05), that of the second phase increased (~30%, P<0.05), and M-wave duration decreased (~30%, P<0.05) as force was raised from 0 to 60–70% MVC force. Conclusions The present results will help to identify the adjustments in the M-wave profle caused by muscle shortening and also contribute to diferentiate these adjustments from those caused by muscle fatigue and/or changes in Na+–K+ pump activity.Publication Open Access The probability density function of the surface electromyogram and its dependence on contraction force in the vastus lateralis(BMC, 2024-10-26) Rodríguez Falces, Javier; Malanda Trigueros, Armando; Mariscal Aguilar, Cristina; Recalde Villamayor, Silvia; Navallas Irujo, Javier; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaIntroduction: the probability density function (PDF) of the surface electromyogram (sEMG) depends on contraction force. This dependence, however, has so far been investigated by having the subject generate force at a few fixed percentages of MVC. Here, we examined how the shape of the sEMG PDF changes with contraction force when this force was gradually increased from zero. Methods: voluntary surface EMG signals were recorded from the vastus lateralis of healthy subjects as force was increased in a continuous manner vs. in a step-wise fashion. The sEMG filling process was examined by measuring the EMG filling factor, computed from the non-central moments of the rectified sEMG signal. Results: in 84% of the subjects, as contraction force increased from 0 to 10% MVC, the sEMG PDF shape oscillated back and forth between the semi-degenerate and the Gaussian distribution; the PDF–force relation varied greatly among subjects for forces between 0 and ~ 10% MVC, but this variability was largely reduced for forces above 10% MVC; the pooled analysis showed that, as contraction force gradually increased, the sEMG PDF evolved rapidly from the semi-degenerate towards the Laplacian distribution from 0 to 5% MVC, and then more slowly from the Laplacian towards the Gaussian distribution for higher forces. Conclusions: the study demonstrated that the dependence of the sEMG PDF shape on contraction force can only be reliably assessed by gradually increasing force from zero, and not by performing a few constant-force contractions. The study also showed that the PDF–force relation differed greatly among individuals for contraction forces below 10% MVC, but this variability was largely reduced when force increased above 10% MVC.Publication Open Access Validation of the filling factor index to study the filling process of the sEMG signal in the quadriceps(Elsevier, 2023) Rodríguez Falces, Javier; Malanda Trigueros, Armando; Mariscal Aguilar, Cristina; Niazi, Imran Khan; Navallas Irujo, Javier; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenIntroduction: The EMG filling factor is an index to quantify the degree to which an EMG signal has been filled. Here, we tested the validity of such index to analyse the EMG filling process as contraction force was slowly increased. Methods: Surface EMG signals were recorded from the quadriceps muscles of healthy subjects as force was gradually increased from 0 to 40% MVC. The sEMG filling process was analyzed by measuring the EMG filling factor (calculated from the non-central moments of the rectified sEMG). Results: (1) As force was gradually increased, one or two prominent abrupt jumps in sEMG amplitude appeared between 0 and 10% of MVC force in all the vastus lateralis and medialis. (2) The jumps in amplitude were originated when a few large-amplitude MUPs, clearly standing out from previous activity, appeared in the sEMG signal. (3) Every time an abrupt jump in sEMG amplitude occurred, a new stage of sEMG filling was initiated. (4) The sEMG was almost completely filled at 2–12% MVC. (5) The filling factor decreased significantly upon the occurrence of an sEMG amplitude jump, and increased as additional MUPs were added to the sEMG signal. (6) The filling factor curve was highly repeatable across repetitions. Conclusions: It has been validated that the filling factor is a useful, reliable tool to analyse the sEMG filling process. As force was gradually increased in the vastus muscles, the sEMG filling process occurred in one or two stages due to the presence of abrupt jumps in sEMG amplitude.Publication Open Access Motor unit action potential duration, II: a new automatic measurement method based on the wavelet transform(Lippincott, Williams & Wilkins, 2007) Rodríguez Carreño, Ignacio; Gila Useros, Luis; Malanda Trigueros, Armando; García Gurtubay, Ignacio; Mallor Giménez, Fermín; Gómez Elvira, Sagrario; Rodríguez Falces, Javier; Navallas Irujo, Javier; Ingeniería Eléctrica y Electrónica; Estadística e Investigación Operativa; Ingeniaritza Elektrikoa eta Elektronikoa; Estatistika eta Ikerketa OperatiboaTo present and evaluate a new algorithm, based on the wavelet transform, for the automatic measurement of motor unit action potential (MUAP) duration. A total of 240 MUAPs were studied. The waveform of each MUAP was wavelet-transformed, and the start and end points were estimated by regarding the maxima and minima points in a particular scale of the wavelet transform. The results of the new method were compared with the gold standard of duration marker positions obtained by manual measurement. The new method was also compared with a conventional algorithm, which we had found to be best in a previous comparative study. To evaluate the new method against manual measurements, the dispersion of automatic and manual duration markers were analyzed in a set of 19 repeatedly recorded MUAPs. The differences between the new algorithm’s marker positions and the gold standard of duration marker positions were smaller than those observed with the conventional method. The dispersion of the new algorithm’s marker positions was slightly less than that of the manual one. Our new method for automatic measurement of MUAP duration is more accurate than other available algorithms and more consistent than manual measurements.Publication Open Access EMG probability density function: a new way to look at EMG signal filling from single motor unit potential to full interference pattern(IEEE, 2023) Navallas Irujo, Javier; Eciolaza Ferrando, Adrián; Mariscal Aguilar, Cristina; Malanda Trigueros, Armando; Rodríguez Falces, Javier; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenAn analytical derivation of the EMG signal's amplitude probability density function (EMG PDF) is presented and used to study how an EMG signal builds-up, or fills, as the degree of muscle contraction increases. The EMG PDF is found to change from a semi-degenerate distribution to a Laplacian-like distribution and finally to a Gaussian-like distribution. We present a measure, the EMG filling factor, to quantify the degree to which an EMG signal has been built-up. This factor is calculated from the ratio of two non-central moments of the rectified EMG signal. The curve of the EMG filling factor as a function of the mean rectified amplitude shows a progressive and mostly linear increase during early recruitment, and saturation is observed when the EMG signal distribution becomes approximately Gaussian. Having presented the analytical tools used to derive the EMG PDF, we demonstrate the usefulness of the EMG filling factor and curve in studies with both simulated signals and real signals obtained from the tibialis anterior muscle of 10 subjects. Both simulated and real EMG filling curves start within the 0.2 to 0.35 range and rapidly rise towards 0.5 (Laplacian) before stabilizing at around 0.637 (Gaussian). Filling curves for the real signals consistently followed this pattern (100% repeatability within trials in 100% of the subjects). The theory of EMG signal filling derived in this work provides (a) an analytically consistent derivation of the EMG PDF as a function of motor unit potentials and motor unit firing patterns; (b) an explanation of the change in the EMG PDF according to degree of muscle contraction; and (c) a way (the EMG filling factor) to quantify the degree to which an EMG signal has been built-up.Publication Open Access The first and second phases of the muscle compound action potential in the thumb are differently affected by electrical stimulation trains(American Physiological Society, 2024) Lanfranchi, Clément; Rodríguez Falces, Javier; Place, Nicolas; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISCSarcolemmal membrane excitability is often evaluated by considering the peak-to-peak amplitude of the compound muscle action potential (M wave). However, the first and second M-wave phases represent distinct properties of the muscle action potential, which are differentially affected by sarcolemma properties and other factors such as muscle architecture. Contrasting with previous studies in which voluntary contractions have been used to induce muscle fatigue, we used repeated electrically induced tetanic contractions of the adductor pollicis muscle and assessed the kinetics of M-wave properties during the course of the contractions. Eighteen participants (24 ± 6 yr; means ± SD) underwent 30 electrically evoked tetanic contractions delivered at 30 Hz, each lasting 3 s with 1 s intervals. We recorded the amplitudes of the first and second M-wave phases for each stimulation. During the initial stimulation train, the first and second M-wave phases exhibited distinct kinetics. The first phase amplitude showed a rapid decrease to reach ~59% of its initial value (P < 0.001), whereas the second phase amplitude displayed an initial transient increase of ~19% (P ¼ 0.007). Within subsequent trains, both the first and second phase amplitudes consistently decreased as fatigue developed with a reduction during the last train reaching ~47% of its initial value (P < 0.001). Analyzing the first M wave of each stimulation train unveiled different kinetics for the first and second phases during the initial trains, but these distinctions disappeared as fatigue progressed. These findings underscore the interplay of factors affecting the M wave and emphasize the significance of separately scrutinizing its first and second phases when assessing membrane excitability adjustments during muscle contractions.Publication Open Access Correlation between discharge timings of pairs of motor units reveals the presence but not the proportion of common synaptic input to motor neurons(American Physiological Society, 2017) Rodríguez Falces, Javier; Negro, Francesco; Farina, Dario; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaWe investigated whether correlation measures derived from pairs of motor unit (MU) spike trains are reliable indicators of the degree of common synaptic input to motor neurons. Several 50-s isometric contractions of the biceps brachii muscle were performed at different target forces ranging from 10 to 30% of the maximal voluntary contraction relying on force feedback. Forty-eight pairs of MUs were examined at various force levels. Motor unit synchrony was assessed by cross-correlation analysis using three indexes: the output correlation as the peak of the cross-histogram (ρ) and the number of synchronous spikes per second (CIS) and per trigger (E). Individual analysis of MU pairs revealed that ρ, CIS, and E were most often positively associated with discharge rate (87, 85, and 76% of the MU pairs, respectively) and negatively with interspike interval variability (69, 65, and 62% of the MU pairs, respectively). Moreover, the behavior of synchronization indexes with discharge rate (and interspike interval variability) varied greatly among the MU pairs. These results were consistent with theoretical predictions, which showed that the output correlation between pairs of spike trains depends on the statistics of the input current and motor neuron intrinsic properties that differ for different motor neuron pairs. In conclusion, the synchronization between MU firing trains is necessarily caused by the (functional) common input to motor neurons, but it is not possible to infer the degree of shared common input to a pair of motor neurons on the basis of correlation measures of their output spike trains.Publication Open Access Understanding EMG PDF changes with motor unit potential amplitudes, firing rates, and noise level through EMG filling curve analysis(IEEE, 2024-08-30) Navallas Irujo, Javier; Mariscal Aguilar, Cristina; Malanda Trigueros, Armando; Rodríguez Falces, Javier; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio IngeniaritzaEMG filling curve characterizes the EMG filling process and EMG probability density function (PDF) shape change for the entire force range of a muscle.We aim to understand the relation between the physiological and recording variables, and the resulting EMG filling curves. We thereby present an analytical and simulation study to explain how the filling curve patterns relate to specific changes in the motor unit potential (MUP) waveforms and motor unit (MU) firing rates, the two main factors affecting the EMG PDF, but also to recording conditions in terms of noise level. We compare the analytical results with simulated cases verifying a perfect agreement with the analytical model. Finally, we present a set of real EMG filling curves with distinct patterns to explain the information about MUP amplitudes, MU firing rates, and noise level that these patterns provide in the light of the analytical study. Our findings reflect that the filling factor increases when firing rate increases or when newly recruited motor unit have potentials of smaller or equal amplitude than the former ones. On the other hand, the filling factor decreases when newly recruited potentials are larger in amplitude than the previous potentials. Filling curves are shown to be consistent under changes of the MUP waveform, and stretched under MUP amplitude scaling. Our findings also show how additive noise affects the filling curve and can even impede to obtain reliable information from the EMG PDF statistics.Publication Open Access EMG modeling(InTechOpen, 2012) Rodríguez Falces, Javier; Navallas Irujo, Javier; Malanda Trigueros, Armando; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaThe aim of this chapter is to describe the approaches used for modelling electromyographic (EMG) signals as well as the principles of electrical conduction within the muscle. Sections are organized into a progressive, step-by-step EMG modeling of structures of increasing complexity. First, the basis of the electrical conduction that allows for the propagation of the EMG signals within the muscle is presented. Second, the models used for describing the electrical activity generated by a single fibre described. The third section is devoted to modeling the organization of the motor unit and the generation of motor unit potentials. Based on models of the architectural organization of motor units and their activation and firing mechanisms, the last section focuses on modeling the electrical activity of a complete muscle as recorded at the surface.Publication Open Access Motor unit action potential duration, I: variability of manual and automatic measurements(Lippincott, Williams & Wilkins, 2007) Rodríguez Carreño, Ignacio; Gila Useros, Luis; Malanda Trigueros, Armando; García Gurtubay, Ignacio; Mallor Giménez, Fermín; Gómez Elvira, Sagrario; Rodríguez Falces, Javier; Navallas Irujo, Javier; Ingeniería Eléctrica y Electrónica; Estadística e Investigación Operativa; Ingeniaritza Elektrikoa eta Elektronikoa; Estatistika eta Ikerketa OperatiboaTo analyze the variability in manual measurements of motor unit action potential (MUAP) duration and to evaluate the effectiveness of well-known algorithms for automatic measurement. Two electromyographists carried out three independent duration measurements of a set of 240 MUAPs. The intraexaminer and interexaminer variabilities were analyzed by means of the Gage Reproducibility and Repeatability method. The mean of the three closest manually marked positions was considered the gold standard of the duration markers positions (GSP). The results of four wellknown automatic methods for estimating MUAP duration were compared with the GSP. Manual measurements of duration showed a lot of variability, with the combined intraoperator and interoperator variability greater than 30%. The greatest difference between manual positions was 11.2 ms. The mean differences between the GSP and those obtained with the four automatic methods ranged between 0.6 and 8.5 ms. Both manual and automatic measurements of MUAP duration show a high degree of variability. More precise methods are needed to improve the accuracy and reliability of the estimates of this parameter.
- «
- 1 (current)
- 2
- 3
- »