Arregui San Martín, Francisco Javier

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Arregui San Martín

First Name

Francisco Javier

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 29
  • PublicationOpen Access
    An antibacterial surface coating composed of PAH/SiO2 nanostructurated films by Layer by Layer
    (2009) Urrutia Azcona, Aitor; Rivero Fuente, Pedro J.; Ruete Ibarrola, Leyre; Goicoechea Fernández, Javier; Matías Maestro, Ignacio; Arregui San Martín, Francisco Javier; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISC; Ingeniería Eléctrica y Electrónica; Gobierno de Navarra / Nafarroako Gobernua
    In this article we propose a novel antibacterial coating composed of SiO2 and the polymer Poly(allylamine hydrochloride) (PAH) on glass slides by the technique Layer-by- Layer (LbL)1. This technique has already used in previous works, and it has the advantage that it allows to control the construction of nanosized and well organized multilayer films. In this work, the new nanotexturized LbL SiO2 surface acts as antibacterial agent. The fabricated coatings have been tested in bacterial cultures of genus Lactobacillus to observe their antibacterial properties.
  • PublicationOpen Access
    Quantum dots coatings inside photonic crystal fibers for temperature sensing
    (IEEE, 2008-12-16) Arigita Lasheras, Jesús; Larrión Zabaleta, Beatriz; Bravo Larrea, Javier; Hernáez Sáenz de Zaitigui, Miguel; Matías Maestro, Ignacio; Arregui San Martín, Francisco Javier; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Gobierno de Navarra / Nafarroako Gobernua
    Temperature sensors based on Quantum Dots (QDs) nanofilms deposited on the inner holes of a Photonic Crystal Fiber (PCF) was created using the layer by layer electrostatic self-assembly method. The structure is based on a PCF fiber segment spliced between two Standard Multimode Fibers (MMF) of different diameters. The sensors showed a linear variation of the intensity and wavelength emission for a temperature range from -20 ºC to 70 ºC.
  • PublicationOpen Access
    Fiber-optic pH sensors fabrication based on selective deposition of neutral red
    (IEEE, 2009-01-22) Hernáez Sáenz de Zaitigui, Miguel; Arregui San Martín, Francisco Javier; Matías Maestro, Ignacio; Ruiz Zamarreño, Carlos; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    In this work, a novel application of the electric field directed layer-by-layer self assembly (EFDLA) selective deposition method for the fabrication of optical fiber pH sensors is presented. Here, indium tin oxide (ITO) coated optical fibers have been fabricated via a dip-coating deposition method. These fibers are used as electrodes in the EFDLA protocol in order to deposit selectively the sensitive layer. Neutral Red (NR) colorimetric pH sensitive indicator and the polymers poly(acrylic acid) (PAA) and poly(allylamine hydrochloride) (PAH) are used in order to obtain a pH sensitive nanostructured coating onto ITO coated optical fibers. The results obtained in this work revealed that the LbL material adsorption on the electrodes can be enhanced or even inhibited when applying a specific direct current voltage between them under some other specific fabrication parameters. Particularly, the response of these sensors to variations of the pH in the surrounding medium was studied when the pH of the solutions used for the fabrication of the films was adjusted to 7.0 and the potential applied between electrodes was set to 2.5 V. These sensors showed fast response time and high repeatability.
  • PublicationOpen Access
    Molecules assembly toward fiber optic nanosensor development
    (SPIE, 2004-06-09) Matías Maestro, Ignacio; Del Villar, Ignacio; Arregui San Martín, Francisco Javier; Claus, Richard O.; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    Different optical fiber sensor configurations based on a LBL nano-technique will be presented. With this technique it is possible to fabricate different structures such as nano Fabry Perot interferometers, optical fiber gratings and any other one dimensional photonic bandgap structures that may be used either for sensing applications or for the implementation of other fiber optic devices. Some of the proposed fiber optic sensors have been fabricated and their main characteristics are their negligible temperature dependence, their fast response, the possibility of using low cost LEDs instead of lasers or even the possibility of operating at different wavelengths.
  • PublicationOpen Access
    Fiber optic multiple-wavelength filter based on one dimensional photonic bandgap structures with defects
    (IEEE, 2004) Del Villar, Ignacio; Matías Maestro, Ignacio; Arregui San Martín, Francisco Javier; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Gobierno de Navarra / Nafarroako Gobernua
    In this paper, a theoretical analysis is given of an optical fiber multiple-wavelength tunable filter based on a onedimensional (1-D) photonic bandgap (PBG) structure with four defects. To understand the positioning of the modes in the bandgap, a previous analysis of structures with one and two defects is performed. By adequate parameterization, it will be possible to control the central wavelengths of the various filters of the device. Parameters responsible for this effect are the contrast of refractive indexes of high- and low-index layers, the optical thickness of the defects, and the number of layers stacked among the defects related to those stacked at the extremes. In addition to this, the finesse of the filters can be controlled by the adequate addition of layers among defects. As a result, a simple 1-D PBG structure with defects will permit designing almost any multiple-wavelength filter, with immediate application in the treatment of wavelength-division- multiplexed (WDM) signals. The possibility of the tunability of this device can be introduced if materials are included whose refractive index changes with some parameter, such as temperature, voltage, or strain. As an example, liquid crystals change their refractive index with an applied voltage, leading to a shift of the central wavelengths of the filters.
  • PublicationOpen Access
    Nanodeposition of materials with complex refractive index in long period fiber gratings
    (IEEE, 2005) Del Villar, Ignacio; Matías Maestro, Ignacio; Arregui San Martín, Francisco Javier; Achaerandio Alvira, Miguel; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Gobierno de Navarra / Nafarroako Gobernua
    An overlay of higher refractive index than the cladding is deposited on a Long Period Fiber Grating (LPFG). This permits to improve in a great manner the sensitivity of the device to ambient and overlay refractive index changes. This causes large shifts of the attenuation bands in the transmission spectrum. To obtain a maximum sensitivity for specific refractive indices of the overlay and the ambient, an optimum overlay thickness must be selected. If the refractive index of the overlay is complex there is an additional phenomenon of vanishing of the attenuation bands in the transmission spectrum. This occurs for specific thickness values of the overlay. The problem is analyzed with a numerical method based on LP mode approximation and coupled mode theory. Experimental results are contrasted with theoretical ones
  • PublicationOpen Access
    Generation of selective fringes with cascaded long-period gratings
    (IEEE, 2006) Del Villar, Ignacio; Achaerandio Alvira, Miguel; Arregui San Martín, Francisco Javier; Matías Maestro, Ignacio; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Gobierno de Navarra / Nafarroako Gobernua
    The inscription of cascaded long-period gratings of different periods in optical fiber permits us to obtain both narrowband and wideband filters in the same spectrum. If used as an optical transducer, it may permit us to detect with the same device- wide and small parameter changes. The transmission spectra have been simulated using a theoretical model based on LP mode coupling and have been also experimentally demonstrated.
  • PublicationOpen Access
    Sensitivity improvement of a humidity sensor based on silica nanospheres on a long-period fiber grating
    (MDPI, 2009) Viegas, Diana; Goicoechea Fernández, Javier; Santos, José Luís; Araújo, Francisco Moita; Ferreira, Luis Alberto; Arregui San Martín, Francisco Javier; Matías Maestro, Ignacio; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    This work addresses a new configuration that improves the sensitivity of a humidity sensor based on a long-period fiber grating coated with a SiO(2)-nanospheres film. An intermediate higher refractive index overlay, deposited through Electrostatic Self-Assembly, is placed between the fiber cladding and the humidity sensitive film in order to increase the total effective refractive index of the coating. With this intermediate design, a three-fold improvement in the sensitivity was obtained. Wavelength shifts up to 15 nm against 5 nm were achieved in a humidity range from 20% to 80%.
  • PublicationOpen Access
    Volatile organic compound optical fiber sensors: a review
    (MDPI, 2006) Elosúa Aguado, César; Matías Maestro, Ignacio; Bariáin Aisa, Cándido; Arregui San Martín, Francisco Javier; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    Volatile organic compound (VOC) detection is a topic of growing interest with applications in diverse fields, ranging from environmental uses to the food or chemical industries. Optical fiber VOC sensors offering new and interesting properties which overcame some of the inconveniences found on traditional gas sensors appeared over two decades ago. Thanks to its minimum invasive nature and the advantages that optical fiber offers such as light weight, passive nature, low attenuation and the possibility of multiplexing, among others, these sensors are a real alternative to electronic ones in electrically noisy environments where electronic sensors cannot operate correctly. In the present work, a classification of these devices has been made according to the sensing mechanism and taking also into account the sensing materials or the different methods of fabrication. In addition, some solutions already implemented for the detection of VOCs using optical fiber sensors will be described with detail.
  • PublicationOpen Access
    Photonic crystal fiber temperature sensor based on quantum dot nanocoatings
    (Hindawi / Wiley, 2009) Larrión Zabaleta, Beatriz; Hernáez Sáenz de Zaitigui, Miguel; Arregui San Martín, Francisco Javier; Goicoechea Fernández, Javier; Bravo Larrea, Javier; Matías Maestro, Ignacio; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    Quantum dot nanocoatings have been deposited by means of the Layer-by-Layer technique on the inner holes of Photonic Crystal Fibers (PCFs) for the fabrication of temperature sensors. The optical properties of these sensors including absorbance, intensity emission, wavelength of the emission band, and the full width at half maximum (FWHM) have been experimentally studied for a temperature range from -40 to 70ºC.