Person:
Arregui San Martín, Francisco Javier

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Arregui San Martín

First Name

Francisco Javier

person.page.departamento

ORCID

0000-0002-3311-0834

person.page.upna

1739

Name

Search Results

Now showing 1 - 10 of 23
  • PublicationOpen Access
    Analysis of one-dimensional photonic band gap structures with a liquid crystal defect towards development of fiber-optic tunable wavelength filters
    (Optical Society of America, 2003) Del Villar, Ignacio; Matías Maestro, Ignacio; Arregui San Martín, Francisco Javier; Claus, Richard O.; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Gobierno de Navarra / Nafarroako Gobernua
    A theoretical analysis of a fiber optical photonic band gap based tunable wavelength filter is presented. The design presented here is based on the quarter wave reflector with a liquid crystal defect layer in the middle of the structure. The filter generated by the structure is shifted in wavelength as the voltage applied to the structure is modified. Some critical parameters are analyzed: the effect of the consideration of fiber as the first layer and not the input medium in the shape of the filter, the number of layers of the structure, and the thickness of the defect layer. This last parameter determines the width of the wavelength sweep of the filter, but is limited by the creation of more defects. Some rules of practical implementation of this device are also given.
  • PublicationOpen Access
    Study and optimization of self-assembled polymeric multilayer structures with neutral red for pH sensing applications
    (Hindawi / Wiley, 2008) Goicoechea Fernández, Javier; Arregui San Martín, Francisco Javier; Corres Sanz, Jesús María; Matías Maestro, Ignacio; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    The characterization of nanostructured thin films is critical in the design and fabrication of optical sensors. Particularly, this work is a detailed study of the properties of layer-by-layer electrostatic self-assembled multilayer (LbL) structures fabricated using poly(allylamine hydrochloride) (PAH) and Neutral Red (NR) as cations, and poly(acrylic acid) (PAA) as polyanion. These LbL films, due to the colorimetric properties of the NR, are suitable for sensor applications such as pH sensing in the physiological range. In the (PAH+NR/PAA) LbL structure, it has been observed a very important influence of the pH of the solutions in the properties of the resultant films. Different techniques such as spectroscopy and atomic force microscopy (AFM) are combined to characterize the films, and the results are analyzed showing coherence with previous works. The LbL structure is finally optimized and dramatically improved nanostructured films were fabricated, showing good sensing properties, short response times, and good stability.
  • PublicationOpen Access
    Photonic crystal fiber temperature sensor based on quantum dot nanocoatings
    (Hindawi / Wiley, 2009) Larrión Zabaleta, Beatriz; Hernáez Sáenz de Zaitigui, Miguel; Arregui San Martín, Francisco Javier; Goicoechea Fernández, Javier; Bravo Larrea, Javier; Matías Maestro, Ignacio; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    Quantum dot nanocoatings have been deposited by means of the Layer-by-Layer technique on the inner holes of Photonic Crystal Fibers (PCFs) for the fabrication of temperature sensors. The optical properties of these sensors including absorbance, intensity emission, wavelength of the emission band, and the full width at half maximum (FWHM) have been experimentally studied for a temperature range from -40 to 70ºC.
  • PublicationOpen Access
    Generation of selective fringes with cascaded long-period gratings
    (IEEE, 2006) Del Villar, Ignacio; Achaerandio, Miguel; Arregui San Martín, Francisco Javier; Matías Maestro, Ignacio; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Gobierno de Navarra / Nafarroako Gobernua
    The inscription of cascaded long-period gratings of different periods in optical fiber permits us to obtain both narrowband and wideband filters in the same spectrum. If used as an optical transducer, it may permit us to detect with the same device- wide and small parameter changes. The transmission spectra have been simulated using a theoretical model based on LP mode coupling and have been also experimentally demonstrated.
  • PublicationOpen Access
    Sensitivity improvement of a humidity sensor based on silica nanospheres on a long-period fiber grating
    (MDPI, 2009) Viegas, Diana; Goicoechea Fernández, Javier; Santos, José Luís; Araújo, Francisco Moita; Ferreira, Luis Alberto; Arregui San Martín, Francisco Javier; Matías Maestro, Ignacio; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    This work addresses a new configuration that improves the sensitivity of a humidity sensor based on a long-period fiber grating coated with a SiO(2)-nanospheres film. An intermediate higher refractive index overlay, deposited through Electrostatic Self-Assembly, is placed between the fiber cladding and the humidity sensitive film in order to increase the total effective refractive index of the coating. With this intermediate design, a three-fold improvement in the sensitivity was obtained. Wavelength shifts up to 15 nm against 5 nm were achieved in a humidity range from 20% to 80%.
  • PublicationOpen Access
    Deposition of coatings on long-period fiber gratings: tunnel effect analogy
    (Springer, 2006) Del Villar, Ignacio; Matías Maestro, Ignacio; Arregui San Martín, Francisco Javier; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Gobierno de Navarra / Nafarroako Gobernua
    The sensitivity of Long-period fiber gratings (LPFGs), coated with high-refractive-index thin film overlays, to the refractive index and the thickness of the overlay, and to the ambient refractive index, can be enhanced with a design based on a two-overlay coating of an LPFG. The first overlay of lower refractive index than the cladding affects the guidance of a cladding mode in the second overlay of higher refractive index than the cladding. This causes a more abrupt cladding modal redistribution than with the deposition of a unique high-refractive-index overlay. The phenomenon is analyzed with a method based on a vectorial analysis of modes and the application of coupled mode theory.
  • PublicationOpen Access
    Influence in cladding mode distribution of overlay deposition on long-period fiber gratings
    (Optical Society of America, 2006) Del Villar, Ignacio; Matías Maestro, Ignacio; Arregui San Martín, Francisco Javier; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Gobierno de Navarra / Nafarroako Gobernua
    A thin overlay of higher refractive index than that of the cladding of a long-period fiber grating induces in cladding modes strong variations in effective index, mode profile, cross-coupling coefficient with the core mode, and self-coupling coefficient. Some conditions must be met in order to obtain the highest inducement. The key parameters are the thickness and the refractive index of the overlay, and the ambient refractive index. Under optimum conditions, the sensitivity of the device to variations in any of the critical parameters is improved in a great manner. The result is large shifts of the attenuation bands in the transmission spectrum. If the refractive index of the overlay is complex, there is an additional phenomenon of vanishing of the attenuation bands in the transmission spectrum. This occurs for specific thickness values of the overlay. The problem is solved in two steps: a vectorial analysis of the modes and the application of coupled-mode theory
  • PublicationOpen Access
    Nanofilms on a hollow core fiber
    (SPIE, 2006) Matías Maestro, Ignacio; Bravo Larrea, Javier; Arregui San Martín, Francisco Javier; Corres Sanz, Jesús María; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Gobierno de Navarra / Nafarroako Gobernua
    We experimentally study the behavior of one multimode fiber–hollow core fiber–multimode fiber structure when nanofilms are deposited on it with the aim of developing practical evanescent field-based devices, such as sensors, filters, etc. The electrostatic self-assembly (ESA) method is used as the deposition technique and the chosen polymers are PDDA and Poly R-478 because of their well-known optical properties and their potential application as humidity sensors. Three different types of hollow core, fibers are used for the fabrication of the devices and at two different wavelengths. An oscillatory-decreasing transmitted optical power is obtained as the thickness of the nanofilms is increased.
  • PublicationOpen Access
    ESA-based in-fiber nanocavity for hydrogen–peroxide detection
    (IEEE, 2005) Del Villar, Ignacio; Matías Maestro, Ignacio; Arregui San Martín, Francisco Javier; Claus, Richard O.; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Gobierno de Navarra / Nafarroako Gobernua
    A fiber-optic sensor sensitive to hydrogen peroxide has been designed based on the electrostatic layer-by-layer selfassembly method. Prussian blue has been deposited in a polymeric structure formed by Poly(allylamine hydrochloride) and poly(acrylic acid). The concentration that can be detected range between 10 6–10 3 M, and recovery of the sensor after immersion into a reductive agent was demonstrated. The response of the sensor is independent of thepHfor values that range between 4–7.4. Some rules for estimation of the refractive index of the material deposited and the thickness of the bilayers are also presented
  • PublicationOpen Access
    Deposition of an overlay with electrostactic self-assembly method in long period fiber gratings
    (Optical Society of America, 2005) Del Villar, Ignacio; Achaerandio, Miguel; Matías Maestro, Ignacio; Arregui San Martín, Francisco Javier; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Gobierno de Navarra / Nafarroako Gobernua
    It was proved that the deposition of an overlay material onto a long-period fiber grating causes important shifts in the wavelengths of the typical attenuation bands that are caused by coupling between cladding and core modes [Opt. Lett. 27, 682 (2002)]. A theoretical model for analyzing a multilayer cylindrical waveguide is presented that permits the phenomenon to be understood and predicted. An overlay of higher refractive index than the cladding starts to guide a mode if a certain thickness value is exceeded. This causes large shifts in the resonance wavelength induced by the grating. One important application of this phenomenon to sensors is enhancement of the sensitivity of a long-period fiber grating to ambient conditions. Theoretical results are corroborated with experimental ones obtained by electrostatic self-assembly.