Fringe generation with non-uniformly coated long-period fiber gratings
Date
Authors
Director
Publisher
Project identifier
Impacto
Abstract
In this work, the spectral characteristics of non-uniform symmetrically ring shaped coatings deposited on long-period fiber gratings (LPFGs) have been theoretically and experimentally investigated. To optimize the structure performances, the device was designed with a simulation tool based on vectorial analysis of modes in a multilayer cylindrical waveguide and coupled mode theory. Electrostatic selfassembling technique was selected to deposit with fine control uniform azimuthally symmetric coatings on the cladding of the LPFG. UV laser micromachining operating at 193nm was used to selectively remove the coating with high spatial resolution and with azimuthal symmetry. By locally and selectively removing portions of the overlay surrounding the LPFG from the middle of the grating, strong modifications of its spectral characteristics were observed. Phase-shift effects and multiple interference fringes have been observed for all the attenuation bands, strongly depending on the length of the uncoated region and the overlay features (thickness and optical properties). This provides a valid technological platform for the development of advanced photonic devices for sensing and telecommunication applications.
Description
Keywords
Department
Faculty/School
Degree
Doctorate program
item.page.cita
item.page.rights
© 2007 Optical Society of America. Users may use, reuse, and build upon the article, or use the article for text or data mining, so long as such uses are for non-commercial purposes and appropriate attribution is maintained. All other rights are reserved.
Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.