Marroyo Palomo, Luis
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Marroyo Palomo
First Name
Luis
person.page.departamento
Ingeniería Eléctrica, Electrónica y de Comunicación
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
10 results
Search Results
Now showing 1 - 10 of 10
Publication Open Access Influence of the power supply on the energy efficiency of an alkaline water electrolyser(Elsevier, 2009) Ursúa Rubio, Alfredo; Marroyo Palomo, Luis; Gubía Villabona, Eugenio; Gandía Pascual, Luis; Diéguez Elizondo, Pedro; Sanchis Gúrpide, Pablo; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Ingeniería Mecánica, Energética y de Materiales; Mekanika, Energetika eta Materialen Ingeniaritza; Química Aplicada; Kimika Aplikatua; Gobierno de Navarra / Nafarroako GobernuaElectric energy consumption represents the greatest part of the cost of the hydrogen produced by water electrolysis. An effort is being carried out to reduce this electric consumption and improve the global efficiency of commercial electrolysers. Whereas relevant progresses are being achieved in cell stack configurations and electrodes performance, there are practically no studies on the effect of the electric power supply topology on the electrolyser energy efficiency. This paper presents an analysis on the energy consumption and efficiency of a 1 N m3 h1 commercial alkaline water electrolyser and their dependence on the power supply topology. The different topologies of power supplies are first summarised, analysed and classified into two groups: thyristor-based (ThPS) and transistor-based power supplies (TrPS). An Electrolyser Power Supply Emulator (EPSE) is then designed, developed and satisfactorily validated by means of simulation and experimental tests. With the EPSE, the electrolyser is characterised both obtaining its I–V curves for different temperatures and measuring the useful hydrogen production. The electrolyser is then supplied by means of two different emulated electric profiles that are characteristic of typical ThPS and TrPS. Results show that the cell stack energy consumption is up to 495 W h N m3 lower when it is supplied by the TrPS, which means 10% greater in terms of efficiency.Publication Open Access Analytical design methodology for Litz-wired high-frequency power transformers(IEEE, 2015) Barrios Rípodas, Ernesto; Ursúa Rubio, Alfredo; Marroyo Palomo, Luis; Sanchis Gúrpide, Pablo; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaIn the last quarter of a century, high-frequency (HF) transformer design has been one of the major concerns to power electronics designers in order to increase converter power densities and efficiencies. Conventional design methodologies are based on iterative processes and rules of thumb founded more on expertise than on theoretical developments. This paper presents an analytical design methodology for litz-wired HF power transformers that provides a deep insight into the transformer design problem making it a powerful tool for converter designers. The most suitable models for the calculation of core and winding losses and the transformer thermal resistance are first selected and then validated with a 5-kW 50-kHz commercial transformer for a photovoltaic application. Based on these models, the design methodology is finally proposed, reducing the design issue to directly solve a five-variable nonlinear optimization problem. The methodology is illustrated with a detailed design in terms of magnetic material, core geometry, and primary and secondary litz-wire sizing. The optimal design achieves a 46.5% power density increase and a higher efficiency of 99.70% when compared with the commercial one.Publication Open Access Energy management for an electro-thermal renewable based residential microgrid with energy balance forecasting and demand side management(Elsevier, 2021) Pascual Miqueleiz, Julio María; Arcos Avilés, Diego; Ursúa Rubio, Alfredo; Sanchis Gúrpide, Pablo; Marroyo Palomo, Luis; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenThis paper proposes an energy management strategy for a residential microgrid comprising photovoltaic (PV) panels, a small wind turbine and solar thermal collectors. The microgrid can control the power exchanged with the grid thanks to a battery and a controllable electric water heater, which provide two degrees of freedom to the control strategy. As input data, the proposed control strategy uses the battery state of charge (SOC), the temperature of the hot water tank, the power of each microgrid element as well as the demand and renewable generation forecasts. By using forecasted data and by controlling the electric water heater, the strategy is able to achieve a better grid power profile while using a smaller battery than previous works, hence reducing the overall cost of the system. The strategy is tested by means of simulation with real data for one year and it is also experimentally validated in the microgrid built at the Renewable Energy Laboratory at the UPNA.Publication Open Access High frequency power transformers with foil windings: maximum interleaving and optimal design(IEEE, 2015) Barrios Rípodas, Ernesto; Urtasun Erburu, Andoni; Ursúa Rubio, Alfredo; Marroyo Palomo, Luis; Sanchis Gúrpide, Pablo; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaFoil conductors and primary and secondary interleaving are normally used to minimize winding losses in high frequency transformers used for high-current power applications. However, winding interleaving complicates the transformer assembly, since taps are required to connect the winding sections, and also complicates the transformer design, since it introduces a new tradeoff between minimizing losses and reducing the construction difficulty. This paper presents a novel interleaving technique, named maximum interleaving, that makes it possible to minimize the winding losses as well as the construction difficulty. An analytical design methodology is also proposed in order to obtain free cooled transformers with a high efficiency, low volume and, therefore, a high power density. For the purpose of evaluating the advantages of the proposed maximum interleaving technique, the methodology is applied to design a transformer positioned in the 5 kW 50 kHz intermediate high frequency resonant stage of a commercial PV inverter. The proposed design achieves a transformer power density of 28 W/cm3 with an efficiency of 99.8%. Finally, a prototype of the maximum-interleaved transformer is assembled and validated satisfactorily through experimental tests.Publication Open Access Boost DC-AC inverter: a new control strategy(IEEE, 2005) Sanchis Gúrpide, Pablo; Ursúa Rubio, Alfredo; Gubía Villabona, Eugenio; Marroyo Palomo, Luis; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenBoost dc–ac inverter naturally generates in a single stage an ac voltage whose peak value can be lower or greater than the dc input voltage. The main drawback of this structure deals with its control. Boost inverter consists of Boost dc–dc converters that have to be controlled in a variable-operation point condition. The sliding mode control has been proposed as an option. However, it does not directly control the inductance averaged-current. This paper proposes a control strategy for the Boost inverter in which each Boost is controlled by means of a double-loop regulation scheme that consists of a new inductor current control inner loop and an also new output voltage control outer loop. These loops include compensations in order to cope with the Boost variable operation point condition and to achieve a high robustness to both input voltage and output current disturbances. As shown by simulation and prototype experimental results, the proposed control strategy achieves a very high reliable performance, even in difficult transient situations such as nonlinear loads, abrupt load changes, short circuits, etc., which sliding mode control cannot cope with.Publication Open Access On the testing, characterization, and evaluation of PV inverters and dynamic MPPT performance under real varying operating conditions(Wiley, 2007) Sanchis Gúrpide, Pablo; López Taberna, Jesús; Ursúa Rubio, Alfredo; Gubía Villabona, Eugenio; Marroyo Palomo, Luis; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Gobierno de Navarra / Nafarroako GobernuaThe increasing number of photovoltaic inverters that are coming on to the PV marketstresses the need to carry out a dynamic characterization of these elements and theirmaximum power point tracking (MPPT) algorithms under real operating conditions.In order to make these conditions repeatable at the laboratory, PV array simulatorsare used. However, actual simulators, including the commercial simulators, recreateonly a single or small set of PV array characteristic curves in which quite commonlytheoretical calculations are included in order to simulate irradiance and temperatureartificial variations. This is far from being a recreation of the real and long dynamicbehavior of a PVarray or generator. The testing and evaluation of the performance ofPV inverters and MPPT algorithms has to be carried out when the PV system movesdynamically according to real operating conditions, including processes such asrapidly changing atmospheric conditions, partial shadows, dawn, and nightfall. Thispaper tries to contribute to the analysis of this problem by means of an electronicsystem that both measures the real evolution of the characteristic curves of PVarraysat outdoor operation and then recreates them at the laboratory to test PV inverters.This way the equipment can highlight the different performances of PV inverters andMPPT techniques when they operate under real operating conditions. As an example,two commercial inverters are tested and analyzed under the recreated behavior of aPV generator during 2 singular days that include processes of partial shading and fastirradiance variations.Publication Open Access On the stability criteria for inverter current control loops with LCL output filters and varying grid impedance(IEEE, 2017) Lumbreras Magallón, David; Barrios Rípodas, Ernesto; Ursúa Rubio, Alfredo; Marroyo Palomo, Luis; Sanchis Gúrpide, Pablo; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISC; Ingeniería Eléctrica y ElectrónicaThe use of LC and LCL filters and grid impedance variations are creating new challenges on the controller design for current control loops of photovoltaic and wind turbine inverters. In the design process, stability criteria such as Bode and revised Bode are commonly used. This paper analyses the limitations of Bode and revised Bode criteria to reliably determine stability and proposes a sufficient and necessary stability criterion, based on the Nyquist criterion, but that makes use of the Bode diagram. The proposed criterion, named generalized Bode criterion, is always reliable and helps the controller design. Relative stability in complex control loops is also studied and a relative stability analysis is proposed. Finally, the generalized Bode criterion and the proposed relative stability analysis are illustrated with a practical example in which a PI is designed in order to guarantee stability and achieve relative stability.Publication Open Access On the stability of advanced power electronic converters: the Generalized Bode Criterion(IEEE, 2019) Lumbreras Magallón, David; Barrios Rípodas, Ernesto; Urtasun Erburu, Andoni; Ursúa Rubio, Alfredo; Marroyo Palomo, Luis; Sanchis Gúrpide, Pablo; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaA key factor in the design of power electronic converters is the development of control systems and, in particular, the determination of their stability. Due to ease of application, the Bode criteria are currently the most commonly used stability criteria, both with regard to its classic version and to the subsequent revisions proposed in the literature. However, as these criteria have a limited range of applicability, on occasions it is necessary to resort to other universally applicable criteria such as the Nyquist criterion. Unlike Bode, the Nyquist criterion can always be applied, although its use considerably complicates the tuning of the controller. This paper proposes a new stability criterion, called Generalized Bode Criterion, which is based on the Nyquist criterion and, therefore, always applicable, but calculated from both the Bode diagram and the 0 Hz phase of the open-loop transfer function, thus making the criterion easy to be applied. This way, the proposed criterion combines the advantages of Nyquist and Bode criteria and provides an interesting and useful tool to help in the controller design process. The validation of the criterion is made on a voltage control loop for a stand-alone PV system through simulation and experimental tests made on a voltage control loop for a stand-alone PV system including a battery, a boost converter, an inverter and an ac load. The tests are also used to show the limitations of the classic Bode criterion and its revisions to correctly determine the stability of complex systems. IEEEPublication Open Access Electronic controlled device for the analysis and design of photovoltaic systems(IEEE, 2005) Sanchis Gúrpide, Pablo; López Taberna, Jesús; Ursúa Rubio, Alfredo; Marroyo Palomo, Luis; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaThe characterization and design of photovoltaic systems is a difficult issue due to the variable operation atmospheric conditions. With this aim, simulators and measurement equipments have been proposed. However, most of them do not deal with real atmospheric conditions. This letter proposes an electronic device that first measures the real evolution of the I-V characteristic curves of photovoltaic modules and generators, and then physically emulates in real time these curves to test photovoltaic inverters. The device consists of a dc-dc converter, a microcontroller and a data storage unit. The two operation modes (emulation and measurement) are digitally driven by the microcontroller. The converter current is controlled by means of a variable-hysteresis control loop, whose reference is provided by the microcontroller. In addition, a digital voltage control loop is designed to find out the complete characteristic curves of the photovoltaic generators. A 15-kW prototype is designed and built that can measure three times per second the characteristic curves of up to seven generators and then emulate their electrical behavior to test photovoltaic inverters. With the proposed device, the optimal configuration and performance of photovoltaic modules and generators, as well as the operation of photovoltaic inverters can be thoroughly analyzed under real atmospheric conditions.Publication Open Access Economic analysis of residential PV self-consumption systems with Li-ion batteries under different billing scenarios(IEEE, 2019) Galilea Gil, Carlos; Pascual Miqueleiz, Julio María; Berrueta Irigoyen, Alberto; Ursúa Rubio, Alfredo; Marroyo Palomo, Luis; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Gobierno de Navarra / Nafarroako Gobernua, 0011-1411-2017-000021In this paper, an economic analysis for four houses with a PV self-consumption system with and without Li-ion batteries is carried out. In particular three different ways of sizing PV and batteries are analyzed under three different billing scenarios for the compensation of surplus energy injected into the grid. All methods run under the same energy strategy, which maximizes self-consumption. The three billing scenarios are: (1) no retribution for surplus energy, (2) retribution at pool price (net billing), and (3) monthly net metering. This study shows how fixed costs make these systems just profitable for small systems. Moreover, the results show how the battery cost and lifespan affects the final profitability of the system and what future evolution in these factors is needed for making these systems profitable under different billing methods.