Santamaría Martínez, Enrique
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Santamaría Martínez
First Name
Enrique
person.page.departamento
Ciencias de la Salud
person.page.instituteName
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
69 results
Search Results
Now showing 1 - 10 of 69
Publication Open Access Olfactory characterization and training in older adults: protocol study(Frontiers Media, 2021) Zambom Ferraresi, Fabíola; Zambom Ferraresi, Fabrício; Fernández Irigoyen, Joaquín; Lachén Montes, Mercedes; Cartas Cejudo, Paz; Lasarte, Juan José; Casares, Noelia; Fernández, Secundino; Cedeño Veloz, Bernardo Abel; Maravi Aznar, Enrique; Uzcanga Lacabe, María Iciar; Galbete Jiménez, Arkaitz; Santamaría Martínez, Enrique; Martínez Velilla, Nicolás; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Gobierno de Navarra / Nafarroako GobernuaThe aim of this article is to present the research protocol for a prospective cohort study that will assess the olfactory function and the effect of an intervention based on olfactory training in healthy very old adults (≥75 years old). A convenience sample of 180 older people (50% female) will be recruited in three different environments: hospitalized control group (CH) with stable acute illness (n = 60); ambulatory control group (CA) of community-based living (n = 60); and an experimental odor training group (EOT) from nursing homes (n = 60). The odor training (OT) intervention will last 12 weeks. All the volunteers will be assessed at baseline; CA and EOT groups will also be assessed after 12 weeks. The primary end point will be change in olfactory capacity from baseline to 12 weeks period of intervention or control. The intervention effects will be assessed with the overall score achieved in Sniffin Sticks Test (SST) – Threshold, Discrimination, and Identification (TDI) extended version. Secondary end points will be changes in cognitive tasks, quality of life, mood, immune status, and functional capacity. All these measurements will be complemented with an immune fitness characterization and a deep proteome profiling of the olfactory epithelium (OE) cultured ex vivo. The current study will provide additional evidence to support the implementation of olfactory precision medicine and the development of immunomodulatory nasal therapies based on non-invasive procedures. The proposed intervention will also intend to increase the knowledge about the olfactory function in very elderly people, improve function and quality of life, and promote the recovery of the health.Publication Open Access Proteomics and recurrence of atrial fibrillation: a pilot study nested in the PREDIMAR trial(Karger, 2025-01-24) Razquin, Cristina; Fernández Irigoyen, Joaquín; Barrio-López, María Teresa; López, Begoña ; Ravassa, Susana; Ramos, Pablo; Macías-Ruiz, Rosa; Ibáñez Criado, Alicia; Santamaría Martínez, Enrique; Goñi, Leticia; Castellanos, Eduardo; Ibáñez Criado, José Luis; Tercedor, Luis ; García-Bolao, Ignacio; Martínez González, Miguel Ángel; Almendral, Jesús; Ruiz Canela, Miguel; Ciencias de la Salud; Osasun Zientziak; Gobierno de Navarra / Nafarroako GobernuaIntroduction: Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia worldwide. Although catheter ablation is the most efficacious therapy, relapses occur frequently (30%) in the first year after ablation. Novel biomarkers of recurrence are needed for a better prediction of recurrence and management of AF. In this pilot study, we aimed to analyze the baseline proteome of subjects included in a case-control study to find differential proteins associated with AF recurrence. Methods: Baseline serum proteomics (354 proteins) data from 16 cases (recurrent AF) and 17 controls (non-recurrent) were obtained using MS/MS analysis. A false discovery rate was performed using a nonlinear fitting method for the selection of proteins. Logistic regression models were used to further analyze the association between differentially expressed proteins and AF recurrence. Results: Ten proteins were differentially represented in cases vs. controls. Two were upregulated in the cases compared to the controls: keratin type I cytoskeletal 17 (Fold-change [FC] = 2.14; p = 0.017) and endoplasmic bifunctional protein (FC = 1.65; p = 0.032). Eight were downregulated in the cases compared to the controls: C4bpA (FC = 0.64; p = 0.006), coagulation factor XI (FC = 0.83; p = 0.011), CLIC1 (FC = 0.62; p = 0.017), haptoglobin (FC = 0.37; p = 0.021), Ig alpha-2 chain C region (FC = 0.49; p = 0.022), C4bpB (FC = 0.73; p = 0.028), N-acetylglucosamine-1- phosphotransferase subunit gamma (FC = 0.61; p = 0.033), and platelet glycoprotein Ib alpha chain (FC = 0.84; p = 0.038). Conclusion: This pilot study identifies ten differentially expressed serum proteins associated with AF recurrence, offering potential biomarkers for improved prediction and management.Publication Open Access Neuropathological stage-dependent proteome mapping of the olfactory tract in Alzheimer's disease: from early olfactory-related omics signatures to computational repurposing of drug candidates(Wiley, 2024) Cartas Cejudo, Paz; Cortés, Adriana; Lachén Montes, Mercedes; Anaya-Cubero, Elena; Puerta, Elena; Solas, Maite; Fernández Irigoyen, Joaquín; Santamaría Martínez, Enrique; Ciencias de la Salud; Osasun Zientziak; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaAlzheimer's disease (AD) is the most common form of dementia, characterized by an early olfactory dysfunction, progressive memory loss, and behavioral deterioration. Albeit substantial progress has been made in characterizing AD-associated molecular and cellular events, there is an unmet clinical need for new therapies. In this study, olfactory tract proteotyping performed in controls and AD subjects (n = 17/group) showed a Braak stage-dependent proteostatic impairment accompanied by the progressive modulation of amyloid precursor protein and tau functional interactomes. To implement a computational repurposing of drug candidates with the capacity to reverse early AD-related olfactory omics signatures (OMSs), we generated a consensual OMSs database compiling differential omics datasets obtained by mass-spectrometry or RNA-sequencing derived from initial AD across the olfactory axis. Using the Connectivity Map-based drug repurposing approach, PKC, EGFR, Aurora kinase, Glycogen synthase kinase, and CDK inhibitors were the top pharmacologic classes capable to restore multiple OMSs, whereas compounds with targeted activity to inhibit PI3K, Insulin-like growth factor 1 (IGF-1), microtubules, and Polo-like kinase (PLK) represented a family of drugs with detrimental potential to induce olfactory AD-associated gene expression changes. To validate the potential therapeutic effects of the proposed drugs, in vitro assays were performed. These validation experiments revealed that pretreatment of human neuron-like SH-SY5Y cells with the EGFR inhibitor AG-1478 showed a neuroprotective effect against hydrogen peroxide-induced damage while the pretreatment with the Aurora kinase inhibitor Reversine reduced amyloid-beta (Aβ)-induced neurotoxicity. Taken together, our data pointed out that OMSs may be useful as substrates for drug repurposing to propose novel neuroprotective treatments against AD.Publication Open Access Amyotrophic lateral sclerosis is accompanied by protein derangements in the olfactory bulb-tract axis(MDPI, 2020) Lachén Montes, Mercedes; Mendizuri, Naroa; Ausín, Karina; Andrés Benito, Pol; Ferrer, Isidro; Fernández Irigoyen, Joaquín; Santamaría Martínez, Enrique; Ciencias de la Salud; Osasun Zientziak; Gobierno de Navarra / Nafarroako Gobernua, Ref. 0011-1411-2020-000028Amyotrophic lateral sclerosis (ALS) is a fatal disease characterized by progressive muscle paralysis due to the degeneration of upper and lower motor neurons. Recent studies point out an involvement of the non-motor axis during disease progression. Despite smell impairment being considered a potential non-motor finding in ALS, the pathobiochemistry at the olfactory level remains unknown. Here, we applied an olfactory quantitative proteotyping approach to analyze the magnitude of the olfactory bulb (OB) proteostatic imbalance in ALS subjects (n = 12) with respect to controls (n = 8). Around 3% of the quantified OB proteome was differentially expressed, pinpointing aberrant protein expression involved in vesicle-mediated transport, macroautophagy, axon development and gliogenesis in ALS subjects. The overproduction of olfactory marker protein (OMP) points out an imbalance in the olfactory signal transduction in ALS. Accompanying the specific overexpression of glial fibrillary acidic protein (GFAP) and Bcl-xL in the olfactory tract (OT), a tangled disruption of signaling routes was evidenced across the OB–OT axis in ALS. In particular, the OB survival signaling dynamics clearly differ between ALS and frontotemporal lobar degeneration (FTLD), two faces of TDP-43 proteinopathy. To the best of our knowledge, this is the first report on high-throughput molecular characterization of the olfactory proteostasis in ALS.Publication Open Access Fiber-based early diagnosis of venous thromboembolic disease by label-free D-dimer detection(Elsevier, 2019) Zubiate Orzanco, Pablo; Urrutia Azcona, Aitor; Ruiz Zamarreño, Carlos; Egea Urra, Josune; Fernández Irigoyen, Joaquín; Giannetti, Ambra; Baldini, Francesco; Díaz Lucas, Silvia; Matías Maestro, Ignacio; Arregui San Martín, Francisco Javier; Santamaría Martínez, Enrique; Chiavaioli, Francesco; Del Villar, Ignacio; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Gobierno de Navarra / Nafarroako GobernuaD-dimer is a useful diagnostic biomarker for deep vein thrombosis or pulmonary embolism, collectively referred to as venous thromboembolism (VTE). The ability to detect in real-time the amount of D-dimer with a fast and reliable method is a key step to anticipate the appearance of these diseases. Here, the results of a highly specific and sensitive biosensor for the detection of D-dimer based on lossy mode resonance in fiber optics are presented. The unique features of specialty fibers in light management integrated with microfluidics allow detecting D-dimer in human serum with a detection limit of 100 ng/mL, a value 5-fold below the clinical cutoff value. Comparison of the results achieved with mass-spectrometry-based proteomics, which allows for the identification of beta- and gamma-chains of fibrinogen, demonstrates the ability of our platform to specifically (>90%) recognize D-dimer. Therefore, this technology potentially represents a paradigm shift in the development of a simple, high-specificity and label-free biosensing platform, which can be applied to speed up diagnostic healthcare processes of venous thromboembolism toward an early diagnostic and personalized treatment system.Publication Open Access Tackling the biological meaning of the human olfactory bulb dyshomeostatic proteome across neurological disorders: an integrative bioinformatic approach(MDPI, 2021) Cartas Cejudo, Paz; Lachén Montes, Mercedes; Fernández Irigoyen, Joaquín; Santamaría Martínez, Enrique; Ciencias de la Salud; Osasun Zientziak; Gobierno de Navarra / Nafarroako GobernuaOlfactory dysfunction is considered an early prodromal marker of many neurodegenerative diseases. Neuropathological changes and aberrant protein aggregates occur in the olfactory bulb (OB), triggering a tangled cascade of molecular events that is not completely understood across neurological disorders. This study aims to analyze commonalities and differences in the olfactory protein homeostasis across neurological backgrounds with different spectrums of smell dysfunction. For that, an integrative analysis was performed using OB proteomics datasets derived from subjects with Alzheimer’s disease (AD), Parkinson´s disease (PD), mixed dementia (mixD), dementia with Lewy bodies (DLB), frontotemporal lobar degeneration (FTLD-TDP43), progressive supranuclear palsy (PSP) and amyotrophic lateral sclerosis (ALS) with respect to OB proteome data from neurologically intact controls. A total of 80% of the differential expressed protein products were potentially disease-specific whereas the remaining 20% were commonly altered across two, three or four neurological phenotypes. A multi-level bioinformatic characterization revealed a subset of potential disease-specific transcription factors responsible for the downstream effects detected at the proteome level as well as specific densely connected protein complexes targeted by several neurological phenotypes. Interestingly, common or unique pathways and biofunctions were also identified, providing novel mechanistic clues about each neurological disease at olfactory level. The analysis of olfactory epithelium, olfactory tract and primary olfactory cortical proteotypes in a multi-disease format will functionally complement the OB dyshomeostasis, increasing our knowledge about the neurodegenerative process across the olfactory axis.Publication Open Access Hippocampal synaptic failure is an early event in experimental parkinsonism with subtle cognitive deficit(Oxford University Press, 2023) Belloso Iguerategui, Arantzazu; Zamarbide, Marta; Merino Galán, Leyre; Rodríguez Chinchilla, Tatiana; Gago, Belén; Santamaría Martínez, Enrique; Fernández Irigoyen, Joaquín; Cotman, Carl W.; Prieto, G. Aleph; Quiroga Varela, Ana; Rodríguez Oroz, María Cruz; Ciencias de la Salud; Osasun ZientziakLearning and memory mainly rely on correct synaptic function in the hippocampus and other brain regions. In Parkinson’s disease, subtle cognitive deficits may even precede motor signs early in the disease. Hence, we set out to unravel the earliest hippocampal synaptic alterations associated with human α-synuclein overexpression prior to and soon after the appearance of cognitive deficits in a parkinsonism model. We bilaterally injected adeno-associated viral vectors encoding A53T-mutated human α-synuclein into the substantia nigra of rats, and evaluated them 1, 2, 4 and 16 weeks post-inoculation by immunohistochemistry and immunofluorescence to study degeneration and distribution of α-synuclein in the midbrain and hippocampus. The object location test was used to evaluate hippocampal-dependent memory. Sequential window acquisition of all theoretical mass spectrometry-based proteomics and fluorescence analysis of single-synapse long-term potentiation were used to study alterations to protein composition and plasticity in isolated hippocampal synapses. The effect of L-DOPA and pramipexole on long-term potentiation was also tested. Human α-synuclein was found within dopaminergic and glutamatergic neurons of the ventral tegmental area, and in dopaminergic, glutamatergic and GABAergic axon terminals in the hippocampus from 1 week post-inoculation, concomitant with mild dopaminergic degeneration in the ventral tegmental area. In the hippocampus, differential expression of proteins involved in synaptic vesicle cycling, neurotransmitter release and receptor trafficking, together with impaired long-term potentiation were the first events observed (1 week post-inoculation), preceding cognitive deficits (4 weeks post-inoculation). Later on, at 16 weeks post-inoculation, there was a deregulation of proteins involved in synaptic function, particularly those involved in the regulation of membrane potential, ion balance and receptor signalling. Hippocampal long-term potentiation was impaired before and soon after the onset of cognitive deficits, at 1 and 4 weeks post-inoculation, respectively. L-DOPA recovered hippocampal long-term potentiation more efficiently at 4 weeks post-inoculation than pramipexole, which partially rescued it at both time points. Overall, we found impaired synaptic plasticity and proteome dysregulation at hippocampal terminals to be the first events that contribute to the development of cognitive deficits in experimental parkinsonism. Our results not only point to dopaminergic but also to glutamatergic and GABAergic dysfunction, highlighting the relevance of the three neurotransmitter systems in the ventral tegmental area-hippocampus interaction from the earliest stages of parkinsonism. The proteins identified in the current work may constitute potential biomarkers of early synaptic damage in the hippocampus and hence, therapies targeting these could potentially restore early synaptic malfunction and consequently, cognitive deficits in Parkinson’s disease.Publication Open Access RTP801 interacts with the tRNA ligase complex and dysregulates its RNA ligase activity in Alzheimer's disease(Oxford University Press, 2024-09-12) Campoy-Campos, Genís; Solana-Balaguer, Júlia; Guisado-Corcoll, Anna; Chicote-González, Almudena; García-Segura, Pol; Pérez-Sisqués, Leticia; Gabriel Torres, Adrián; Canal, Mercè; Molina-Porcel, Laura; Fernández Irigoyen, Joaquín; Santamaría Martínez, Enrique; Pouplana, Lluís Ribas de; Alberch, Jordi; Martí, Eulàlia; Giralt, Albert; Pérez-Navarro, Esther; Malagelada, Cristina; Ciencias de la Salud; Osasun ZientziakRTP801/REDD1 is a stress-responsive protein overexpressed in neurodegenerative diseases such as Alzheimer's disease (AD) that contributes to cognitive deficits and neuroinflammation. Here, we found that RTP801 interacts with HSPC117, DDX1 and CGI-99, three members of the tRNA ligase complex (tRNA-LC), which ligates the excised exons of intron-containing tRNAs and the mRNA exons of the transcription factor XBP1 during the unfolded protein response (UPR). We also found that RTP801 modulates the mRNA ligase activity of the complex in vitro since RTP801 knockdown promoted XBP1 splicing and the expression of its transcriptional target, SEC24D. Conversely, RTP801 overexpression inhibited the splicing of XBP1. Similarly, in human AD postmortem hippocampal samples, where RTP801 is upregulated, we found that XBP1 splicing was dramatically decreased. In the 5xFAD mouse model of AD, silencing RTP801 expression in hippocampal neurons promoted Xbp1 splicing and prevented the accumulation of intron-containing pre-tRNAs. Finally, the tRNA-enriched fraction obtained from 5xFAD mice promoted abnormal dendritic arborization in cultured hippocampal neurons, and RTP801 silencing in the source neurons prevented this phenotype. Altogether, these results show that elevated RTP801 impairs RNA processing in vitro and in vivo in the context of AD and suggest that RTP801 inhibition could be a promising therapeutic approach.Publication Open Access Signature-driven repurposing of Midostaurin for combination with MEK1/2 and KRASG12C inhibitors in lung cancer(Springer Nature, 2023) Macaya, Irati; Roman, Marta; Welch, Connor; Entrialgo-Cadierno, Rodrigo; Salmon, Marina; Santos, Alba; Feliu, Iker; Kovalski, Joanna; López Erdozain, Inés; Rodríguez-Remírez, María; Palomino Echeverría, Sara; Lonfgren, Shane M.; Ferrero, Macarena; Calabuig, Silvia; Ludwig, Iziar A.; Lara-Astiaso, David; Jantus-Lewintre, Eloisa; Guruceaga, Elizabeth; Narayanan, Shruthi; Ponz Sarvisé, Mariano; Pineda Lucena, Antonio; Lecanda, Fernando; Ruggero, Davide; Khatri, Purvesh; Santamaría Martínez, Enrique; Fernández Irigoyen, Joaquín; Ferrer, Irene; Paz-Ares, Luis; Drosten, Matthias; Barbacid, Mariano; Gil-Bazo, Ignacio; Vicent, Silvestre; Ciencias de la Salud; Osasun ZientziakDrug combinations are key to circumvent resistance mechanisms compromising response to single anti-cancer targeted therapies. The implementation of combinatorial approaches involving MEK1/2 or KRASG12C inhibitors in the context of KRAS-mutated lung cancers focuses fundamentally on targeting KRAS proximal activators or effectors. However, the antitumor effect is highly determined by compensatory mechanisms arising in defined cell types or tumor subgroups. A potential strategy to find drug combinations targeting a larger fraction of KRAS-mutated lung cancers may capitalize on the common, distal gene expression output elicited by oncogenic KRAS. By integrating a signature-driven drug repurposing approach with a pairwise pharmacological screen, here we show synergistic drug combinations consisting of multi-tyrosine kinase PKC inhibitors together with MEK1/2 or KRASG12C inhibitors. Such combinations elicit a cytotoxic response in both in vitro and in vivo models, which in part involves inhibition of the PKC inhibitor target AURKB. Proteome profiling links dysregulation of MYC expression to the effect of both PKC inhibitor-based drug combinations. Furthermore, MYC overexpression appears as a resistance mechanism to MEK1/2 and KRASG12C inhibitors. Our study provides a rational framework for selecting drugs entering combinatorial strategies and unveils MEK1/2- and KRASG12C-based therapies for lung cancer.Publication Open Access The proteome of Medicago truncatula in response to ammonium and urea nutrition reveals the role of membrane proteins and enzymes of root lignification(Elsevier, 2019) Royo Castillejo, Beatriz; Esteban Terradillos, Raquel; Buezo Bravo, Javier; Santamaría Martínez, Enrique; Fernández Irigoyen, Joaquín; Becker, Dirk; Morán Juez, José Fernando; Zientziak; Institute for Multidisciplinary Research in Applied Biology - IMAB; Ciencias; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaPlants differ widely in their growth and tolerance responses to ammonium and urea nutrition, while derived phenotypes seem markedly different from plants grown under nitrate supply. Plant responses to N sources are complex, and the traits involved remain unknown. This work reports a comprehensive and quantitative root proteomic study on the NH4+-tolerant legume Medicago truncatula grown under axenic conditions with either nitrate, NH4+ or urea supply as sole N source by using the iTRAQ method. Sixty-one different proteins among the three N sources were identified. Interestingly, among the proteomic responses, urea nutrition displayed greater similarity to nitrate than to ammonium nutrition. We found remarkable differences in membrane proteins that play roles in sensing the N form, and regulate the intracellular pH and the uptake of N. Also, several groups of proteins were differentially expressed in the C metabolism pathway involved in reorganizing N assimilation. In addition, enzymes related to phenylpropanoid metabolism, including the peroxidases POD2, POD6, POD7 and POD11, which were up-regulated under ammonium nutrition, contributed to the reinforcement of cell walls, as confirmed by specific staining of lignin. Thus, we identified cell wall lignification as an important tolerance mechanism of root cells associated with the stunted phenotype typical of plants grown under ammonium nutrition.