Matías Maestro, Ignacio

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Matías Maestro

First Name

Ignacio

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 201
  • PublicationOpen Access
    Generation of lossy mode resonances (LMR) using perovskite nanofilms
    (Chinese Academy of Sciences, 2024) Armas, Dayron; Matías Maestro, Ignacio; López-González, M. Carmen; Ruiz Zamarreño, Carlos; Zubiate Orzanco, Pablo; Del Villar, Ignacio; Romero, Beatriz; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    The results presented here show for the first time the experimental demonstration of the fabrication of lossy mode resonance (LMR) devices based on perovskite coatings deposited on planar waveguides. Perovskite thin films have been obtained by means of the spin coating technique and their presence was confirmed by ellipsometry, scanning electron microscopy, and X-ray diffraction testing. The LMRs can be generated in a wide wavelength range and the experimental results agree with the theoretical simulations. Overall, this study highlights the potential of perovskite thin films for the development of novel LMR-based devices that can be used for environmental monitoring, industrial sensing, and gas detection, among other applications.
  • PublicationOpen Access
    Development of an optical refractometer by analysis of one-dimensional photonic bandgap structures with defects
    (Optical Society of America, 2003) Matías Maestro, Ignacio; Del Villar, Ignacio; Arregui San Martín, Francisco Javier; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Gobierno de Navarra / Nafarroako Gobernua
    A theoretical analysis of an optical fiber photonic-bandgap-based refractometer is presented. The design is based on a quarter-wave ref lector with one defect. By modifying both the real and the imaginary parts of the index of refraction of the defects we begin to change either the frequency or the amplitude of the localized optical mode. So we could fabricate a specific optical fiber refractometer by combining all the variables: index of refractive index of the defects and the rest of layers, thickness of the defect, number of layers, etc. to yield a large set of design possibilities, for example, detecting wider or thinner ranges of refractive indices, or controlling the detection accuracy. Some rules for the practical implementation of the refractometer are given.
  • PublicationOpen Access
    Fiber-optic lossy mode resonance sensors
    (Elsevier, 2014) Arregui San Martín, Francisco Javier; Del Villar, Ignacio; Corres Sanz, Jesús María; Goicoechea Fernández, Javier; Ruiz Zamarreño, Carlos; Elosúa Aguado, César; Hernáez Sáenz de Zaitigui, Miguel; Rivero Fuente, Pedro J.; Socorro Leránoz, Abián Bentor; Urrutia Azcona, Aitor; Sánchez Zábal, Pedro; Zubiate Orzanco, Pablo; López Torres, Diego; Acha Morrás, Nerea de; Matías Maestro, Ignacio; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Gobierno de Navarra / Nafarroako Gobernua
    In the last 4 years, experimental evidences about the potential use of optical sensors based on Lossy Mode Resonances (LMR) have been presented in the literature. These LMR sensors have some similarities with Surface Plasmon Resonance (SPR) sensors, the gold standard in label-free, real-time biomolecular interaction analysis. In these new LMR sensors, if the non-metallic nanocladding of an optical waveguide fulfills the conditions explained in this work, coupling of light to the cladding modes happens at certain resonance wavelengths, which enables the use of LMR devices as refractometers and opens the door to diverse applications such as in biology and proteomics research. These highly sensitive refractometers have already shown sensitivities higher than 20,000 nm/RIU or 5x10-7 RIU and, given the youth of this field, it is expected to achieve even better values.
  • PublicationOpen Access
    Integration of second-life battery packs for self-consumption applications: analysis of a real experience
    (IEEE, 2021) Soto Cabria, Adrián; Berrueta Irigoyen, Alberto; Zorrilla, Pablo; Iribarren Zabalegui, Álvaro; Castillo, Diego H.; Rodríguez Rodríguez, Wenceslao Eduardo; Rodríguez, Adolfo J.; Vargas Requena, Dávid Tomás; Matías Maestro, Ignacio; Sanchis Gúrpide, Pablo; Ursúa Rubio, Alfredo; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Gobierno de Navarra / Nafarroako Gobernua, 0011–1411–2018–000029 GERA; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, ReBMS PJUPNA1904
    This contribution presents a methodology for the integration of Li-ion batteries discarded from electric vehicle into a collective self-consumption installation, showing the technical feasibility of such battery second use. In this regard, the state of charge (SOC) estimation is a relevant issue for the energy management of the second-life battery. Therefore, a SOC estimator is proposed in this contribution and tested in field. Moreover, the revealed costs analysis allows an economic comparison between the integration of a discarded battery pack in a second-life application or a remanufacture of these packs, thereby selecting the most suitable cells to build second-life batteries. This is a crucial issue for companies focused on the development of second-life batteries. The results obtained after testing the second-life battery pack in a real installation make it possible to extol the benefits of including this type of batteries in a self-consumption system, reaching a self-consumption ratio of 69 % and reducing by 36 % the maximum power peak demanded from the grid.
  • PublicationOpen Access
    Simultaneous generation of surface plasmon and lossy mode resonances in the same planar platform
    (MDPI, 2022) Fuentes Lorenzo, Omar; Del Villar, Ignacio; Domínguez Catena, Iris; Corres Sanz, Jesús María; Matías Maestro, Ignacio; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    A planar waveguide consisting of a coverslip for a microscope glass slide was deposited in one of its two faces with two materials: silver and indium tin oxide (ITO). The incidence of light by the edge of the coverslip permitted the generation of both surface plasmon and lossy mode resonances (SPRs and LMRs) in the same transmission spectrum with a single optical source and detector. This proves the ability of this optical platform to be used as a benchmark for comparing different optical phenomena generated by both metal and dielectric materials, which can be used to progress in the assessment of different sensing technologies. Here the SPR and the LMR were compared in terms of sensitivity to refractive index and figure of merit (FoM), at the same time it was demonstrated that both resonances can operate independently when silver and ITO coated regions are surrounded by different refractive index liquids. The results were supported with numerical results that confirm the experimental ones.
  • PublicationOpen Access
    Advances in sensors using lossy mode resonances
    (SPIE, 2023-11-27) Matías Maestro, Ignacio; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC
    Lossy mode resonance (LMR) is a phenomenon that is observed in the optical spectrum when a mode that progresses through a waveguide starts to be guided in a thin film deposited on this waveguide under certain conditions, mainly related to materials and angles of incidence. An important property that LMRs have is that they can be guided into the thin film with both magnetic (TM) and electrical (TE) polarized light, unlike the other two main types of optical resonances with the same modus operandi that complete this trilogy, surface plasmon resonances (SPRs) and surface exciton plasmon resonances (SEPR). Regarding the potential materials that make up thin films, they include dielectrics suchs as metal oxides such as titanium dioxide (TiO2), zinc oxide (ZnO), tin oxide (SnO2) or polymers. In all cases it must be fulfilled that the real part of the refractive index must be greater than its imaginary part, unlike also the SPR and SEPR. As for the angles of incidence, they must be close to 90º, which explains the success of deposition of thin films around an optical fiber to obtain sensors based on LMR, although interesting results have recently been obtained using planar waveguides. This work will present the main milestones obtained during more than a decade using LMR-based sensors for the detection of multiple parameters. Among these interesting aspects, we can mention the sensitivity records achieved, hybridization with other sensing technologies or the possibility of multiplexing multiple sensors on the same substrate, just to mention a few.
  • PublicationOpen Access
    Interdigital concept in photonic sensors based on an array of lossy mode resonances
    (Nature Research, 2021) Domínguez Rodríguez, Ismel; Del Villar, Ignacio; Fuentes Lorenzo, Omar; Corres Sanz, Jesús María; Matías Maestro, Ignacio; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Multi-parameter detection is key in the domain of sensors. Here it is demonstrated that an indium tin oxide (ITO) nanocoating can be used to generate multiple lossy mode resonances (LMRs) in the optical spectrum. To achieve this, a nanocoating with a gradient in thickness is generated on the surface of a planar waveguide, permitting broadening of the LMR because the position of an LMR in the optical spectrum is directly related to the nanocoating thickness. The nanocoating with a gradient in thickness contributes multiple LMRs, each one centred at a different wavelength. With a further etching or deposition using a mask, a pattern of deposited and non-deposited regions can be created, resulting in isolation of the LMRs by preventing LMR overlap. This enables tracking of each central wavelength separately, which can be tuned through control of the gradient or nanocoating pattern. The array of LMR-based sensors is a photonics analogue to the interdigital concept in electronics, enabling multiple resonances to be used for multiparameter sensing.
  • PublicationOpen Access
    Tapered single-mode optical fiber pH sensor based on lossy mode resonances generated by a polymeric thin-film
    (IEEE, 2012) Socorro Leránoz, Abián Bentor; Del Villar, Ignacio; Corres Sanz, Jesús María; Arregui San Martín, Francisco Javier; Matías Maestro, Ignacio; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Lossy mode resonances can be generated with certain polymeric nanostructures, such as those obtained with a multilayered assembly of poly(allylamine hydrochloride) and poly (acrylic acid). This coating is adsorbed by the electrostatic self assembly technique onto a tapered single-mode optical fiber, in order to evaluate its performance when detecting pH. According to the results reported in this work, the high sensitivity given by a tapering process in a single-mode optical fiber is increased by the effect of this kind of electromagnetic resonances. Particularly, in a pH range from 4.0 to 6.0 the overall wavelength shift of this sensor reaches 200 nm and the transmission at the resonance wavelengths can fall down to -50 dB. These data provide results which can be taken into account to detect pH with high accuracy.
  • PublicationOpen Access
    Molecules assembly toward fiber optic nanosensor development
    (SPIE, 2004-06-09) Matías Maestro, Ignacio; Del Villar, Ignacio; Arregui San Martín, Francisco Javier; Claus, Richard O.; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    Different optical fiber sensor configurations based on a LBL nano-technique will be presented. With this technique it is possible to fabricate different structures such as nano Fabry Perot interferometers, optical fiber gratings and any other one dimensional photonic bandgap structures that may be used either for sensing applications or for the implementation of other fiber optic devices. Some of the proposed fiber optic sensors have been fabricated and their main characteristics are their negligible temperature dependence, their fast response, the possibility of using low cost LEDs instead of lasers or even the possibility of operating at different wavelengths.
  • PublicationOpen Access
    Extraordinary sensitivity with quasi-lossy mode resonance mode transition bands in long period fiber gratings
    (Elsevier, 2025-01-16) González Salgueiro, Lázaro José; Del Villar, Ignacio; Corres Sanz, Jesús María; Matías Maestro, Ignacio; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    This study presents a novel sensor design utilizing a long-period fiber grating (LPFG) deposited with a TiO2 nanocoating via atomic layer deposition. The study combines theoretical simulations and experimental validation to optimize the grating period and modulation index to operate in the mode transition with a quasi-lossy mode resonance (LMR) behavior, i.e., the LPFG attenuation bands shift similarly to LMRs. This enables the achievement of a remarkable sensitivity of 78 nm/nm, allowing for the detection of sub-angstrom variations in film thickness, which is critical for applications in semiconductor manufacturing. Our setup facilitates continuous monitoring of the transmission spectrum, enabling real-time adjustments during deposition to maximize sensitivity. As proof of concept for the applicability of the sensor as a refractive index sensor, we demonstrated exceptional sensitivity for nitrogen detection, achieving around 10,000 nm/RIU, with a figure of merit of 200. This marks one the highest sensitivities reported for optical fiber gas sensors and suggests this technology could revolutionize the field duet to its simplicity in terms of sensor design.