Matías Maestro, Ignacio

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Matías Maestro

First Name

Ignacio

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 201
  • PublicationOpen Access
    Twin lossy mode resonance on a single D-shaped optical fiber
    (Optica, 2021) Imas González, José Javier; Ruiz Zamarreño, Carlos; Del Villar, Ignacio; Pérez Escudero, José Manuel; Matías Maestro, Ignacio; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    This letter presents the fabrication of dual lossy mode resonance (LMR) refractometers based on titanium dioxide (TiO2) and tin oxide (SnO2) thin films deposited on a single side-polished D-shaped optical fiber. For the first time, to the best of our knowledge, two independent LMRs are obtained in the same D-shaped optical fiber, by using a step-shaped nanostructure consisting of a first section of TiO2 with a thickness of 120 nm and a second section with a thickness of 140 nm (120 nm of TiO2 and 20 nm of SnO2). Each section is responsible for generating a first-order LMR with TM-polarized light (LMRTM). TiO2 is deposited by atomic layer deposition and SnO2 by electron-beam deposition. The theoretical results show that the depth of each of the resonances of the dual LMR depends on the length of the corresponding section. Two experimental devices were fabricated with sections of different lengths, and their sensitivities were studied, achieving values ∼ 4000 nm/refractive index unit (RIU) with a maximum of 4506 nm/RIU for values of the SRI between 1.3327 and 1.3485.
  • PublicationOpen Access
    Fabrication of long period gratings by periodically removing the coating of cladding-etched single mode optical fiber towards optical fiber sensor development
    (MDPI, 2018) Ascorbe Muruzabal, Joaquín; Corres Sanz, Jesús María; Del Villar, Ignacio; Matías Maestro, Ignacio; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Gobierno de Navarra / Nafarroako Gobernua, 2017/PI044
    Here, we present a novel method to fabricate long period gratings using standard single mode optical fibers (SMF). These optical devices were fabricated in a three-step process, which consisted of etching the SMF, then coating it with a thin-film and, the final step, which involved removing sections of the coating periodically by laser ablation. Tin dioxide was chosen as the material for this study and it was sputtered using a pulsed DC sputtering system. Theoretical simulations were performed in order to select the appropriate parameters for the experiments. The responses of two different devices to different external refractive indices was studied, and the maximum sensitivity obtained was 6430 nm/RIU for external refractive indices ranging from 1.37 to 1.39.
  • PublicationOpen Access
    Optical fiber vacuum sensor based on etched SMS structure and PDMS coating
    (IEEE, 2020) Ascorbe Muruzabal, Joaquín; Fuentes Lorenzo, Omar; Arregui San Martín, Francisco Javier; Matías Maestro, Ignacio; Corres Sanz, Jesús María; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    In this work, an optical fiber vacuum sensor based on a single-mode multimode single-mode (SMS) structure coated with polydimethylsiloxane (PDMS) is studied. The SMS structure generates an interferometric pattern based on multimode interference. The structure is dip-coated with a layer of PDMS, whose optical properties change when it is subjected to varying vacuum pressure. Different strategies are applied in an attempt to improve the final performance of the sensor, such as decreasing the diameter of the fiber and modifying the properties of the coating by modifying the proportion of solvent. Decreasing the diameter of the optical fiber and using toluene as a solvent are both proved to be successful strategies for increasing the sensitivity of the sensor. The devices are studied in the 1×10-3–10 mbar range with a maximum wavelength shift of 12 nm, leading to a maximum sensitivity of 35 nm/mbar. The simplicity of the fabrication process, which can be applied to more sensitive structures, suggests that PDMS may be a good choice for the development of optical fiber vacuum sensors.
  • PublicationOpen Access
    Energy harvesting approaches in IoT scenarios with very low ambient energy
    (European Association for the Development of Renewable Energy, Environment and Power Quality (EA4EPQ), 2019) López Martín, Antonio; Algueta-Miguel, Jose M.; Matías Maestro, Ignacio; Institute of Smart Cities - ISC
    The feasibility of multi-source energy harvesting in Internet of Things (IoT) scenarios with low and intermittent ambient energy is addressed. As a relevant case study, application to a smart cargo container system is analysed. The most relevant features of the main energy sources available in this target application are identified, and various transducers adapted to such sources are evaluated. Measurement results indicate that combined piezoelectric and thermoelectric generation inside cargo containers can significantly extend the battery lifetime of IoT end nodes embedded in such containers.
  • PublicationOpen Access
    All fiber interferometer for ice detection
    (Optica Publishing Group, 2018) Arozarena Arana, Jesús Antonio; Socorro Leránoz, Abián Bentor; Del Villar, Ignacio; Díaz Lucas, Silvia; Matías Maestro, Ignacio; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISC
    This work presents an etched single-mode - multimode - single-mode structure that detects the solid-to-liquid change of state of the water due to an increased refractive index sensitivity within the 1.308 - 1.321 RIU range
  • PublicationOpen Access
    Refractometric sensors based on multimode interference in a thin-film coated singlemode– multimode–single-mode structure with reflection configuration
    (Optical Society of America, 2014) Del Villar, Ignacio; Socorro Leránoz, Abián Bentor; Corres Sanz, Jesús María; Arregui San Martín, Francisco Javier; Matías Maestro, Ignacio; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Gobierno de Navarra / Nafarroako Gobernua
    Thin-film coated single-mode–multimode–single-mode (SMS) structures have been analyzed both theoretically and experimentally with the aim of detecting different refractive indices. By adequate selection of the thickness of the thin film and of the diameter of the multimode segment in the SMS structure, a seven-fold improvement can be obtained in the sensitivity of the device to the surrounding medium refractive index, achieving a maximum sensitivity of 1199.18 nm∕refractive index unit for the range of refractive indices from 1.321 to 1.382. Using layer-by-layer self-assembly for deposition, both on the cladding and on the tip of the multimode segment, allows the reflected power to increase, which avoids the application of a mirror on the tip of the multimode segment.
  • PublicationOpen Access
    Nanofilms on a hollow core fiber
    (SPIE, 2006) Matías Maestro, Ignacio; Bravo Larrea, Javier; Arregui San Martín, Francisco Javier; Corres Sanz, Jesús María; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Gobierno de Navarra / Nafarroako Gobernua
    We experimentally study the behavior of one multimode fiber–hollow core fiber–multimode fiber structure when nanofilms are deposited on it with the aim of developing practical evanescent field-based devices, such as sensors, filters, etc. The electrostatic self-assembly (ESA) method is used as the deposition technique and the chosen polymers are PDDA and Poly R-478 because of their well-known optical properties and their potential application as humidity sensors. Three different types of hollow core, fibers are used for the fabrication of the devices and at two different wavelengths. An oscillatory-decreasing transmitted optical power is obtained as the thickness of the nanofilms is increased.
  • PublicationOpen Access
    Temperature sensor using a multiwavelength erbium-doped fiber ring laser
    (Hindawi, 2017) Díaz Lucas, Silvia; San Fabián García, Noé; Socorro Leránoz, Abián Bentor; Matías Maestro, Ignacio; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISC; Ingeniería Eléctrica y Electrónica
    A novel temperature sensor is presented based on a multiwavelength erbium-doped fiber ring laser.The laser is comprised of fiber Bragg grating reflectors as the oscillation wavelength selecting filters.The performance of the temperature sensor in terms of both wavelength and laser output power was investigated, as well as the application of this systemfor remote temperaturemeasurements.
  • PublicationOpen Access
    High sensitivity humidity sensor based on cladding-etched optical fiber and lossy mode resonances
    (Elsevier, 2016) Ascorbe Muruzabal, Joaquín; Corres Sanz, Jesús María; Matías Maestro, Ignacio; Arregui San Martín, Francisco Javier; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    In this work a high sensitivity optical fiber humidity sensor (OFHS) is presented. The configuration chosen for this purpose is a cladding-etched single mode optical fiber (CE-SMF) coated with a thin film of tin oxide (SnO2). The etching has been made using hydrofluoric acid (HF) and the coating has been fabricated by means of sputtering. Tin oxide was used to build the nano-coating which produces the Lossy Mode Resonance (LMR) and works as sensitive material. Theoretical and experimental results are shown and compared. The device was tested using a climatic chamber in order to obtain the response of the OFHS to relative humidity. Changes greater than 130 nm have been obtained for relative humidity varying from 20% to 90%, which gives a sensitivity of 1.9 nm/%RH.
  • PublicationOpen Access
    Design rules for lossy mode resonance based sensors
    (Optical Society of America, 2012) Del Villar, Ignacio; Hernáez Sáenz de Zaitigui, Miguel; Ruiz Zamarreño, Carlos; Sánchez Zábal, Pedro; Fernández Valdivielso, Carlos; Arregui San Martín, Francisco Javier; Matías Maestro, Ignacio; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Gobierno de Navarra / Nafarroako Gobernua
    Lossy mode resonances can be obtained in the transmission spectrum of cladding removed multimode optical fiber coated with a thin-film. The sensitivity of these devices to changes in the properties of the coating or the surrounding medium can be optimized by means of the adequate parameterization of the coating refractive index, the coating thickness and the surrounding medium refractive index (SMRI). Some basic rules of design, which enable the selection of the best parameters for each specific sensing application, are indicated in this work.