Villadangos Alonso, Jesús
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Villadangos Alonso
First Name
Jesús
person.page.departamento
Estadística, Informática y Matemáticas
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
46 results
Search Results
Now showing 1 - 10 of 46
Publication Open Access Design and performance analysis of wireless body area networks in complex indoor e-Health hospital environments for patient remote monitoring(SAGE, 2016) Aguirre Gallego, Erik; López Iturri, Peio; Azpilicueta Fernández de las Heras, Leyre; Rivarés Garasa, Carmen; Astrain Escola, José Javier; Villadangos Alonso, Jesús; Falcone Lanas, Francisco; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Ingeniería Matemática e Informática; Matematika eta Informatika IngeniaritzaIn this article, the design and performance analysis of wireless body area network–based systems for the transmission of medical information readable in an android-based application deployed within complex indoor e-Health scenarios is presented. The scenario under analysis is an emergency room area, where a patient is being monitored remotely with the aid of wearable wireless sensors placed at different body locations. Due to the advent of Internet of Things, in the near future a cloud of a vast number of wireless devices will be operating at the same time, potentially interfering one another. Ensuring good performance of the deployed wireless networks in this kind of environment is mandatory and obtaining accurate radio propagation estimations by means of a computationally efficient algorithm is a key issue. For that purpose, an in-house three-dimensional ray launching algorithm is employed, which provides radio frequency power distribution values, power delay profiles, and delay spread values for the complete volume of complex indoor scenarios. Using this information together with signal-to-noise estimations and link budget calculations, the most suitable wireless body area network technology for this context is chosen. Additionally, an in-house developed human body model has been developed in order to model the impact of the presence of monitored patients. A campaign of measurements has been carried out in order to validate the obtained simulation results. Both the measurements and simulation results illustrate the strong influence of the presented scenario on the overall performance of the wireless body area networks: losses due to material absorption and the strong influence of multipath components due to the great number of obstacles and the presence of persons make the use of the presented method very useful. Finally, an android-based application for the monitoring of patients is presented and tested within the emergency room scenario, providing a flexible solution to increase interactivity in health service provision.Publication Open Access An IoT framework for SDN based city mobility(Springer, 2021) Al-Rahamneh, Anas; Astrain Escola, José Javier; Villadangos Alonso, Jesús; Klaina, Hicham; Picallo Guembe, Imanol; López Iturri, Peio; Falcone Lanas, Francisco; Estatistika, Informatika eta Matematika; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Estadística, Informática y Matemáticas; Ingeniería Eléctrica, Electrónica y de ComunicaciónThe Internet of Things (IoT) is becoming more widespread, with global application in a wide range of commercial sectors, utilizing a variety of technologies for customized use in specific environments. The combinationof applications and protocolsand the unique requirements of each environment present a significant challenge for IoT applications, necessitating communication and message exchange support. This paper presents a proposed SDN-based edge smart bypass/ multiprotocol switching for bicycle networks that supports functionalities of coordination of various wireless transmission protocols. A performance assessment will be presented, addressing a comparison between the different protocols (LoRaWAN vs. Sigfox) in terms radio coverage.Publication Open Access Adjusting fuzzy automata for string similarity measuring(EUSFLAT, 2001) Astrain Escola, José Javier; Villadangos Alonso, Jesús; González de Mendívil Moreno, José Ramón; Garitagoitia Padrones, José Ramón; Fariña Figueredo, Federico; Ingeniería Matemática e Informática; Matematika eta Informatika Ingeniaritza; Automática y Computación; Automatika eta KonputazioaIn this paper, we introduce a fuzzy automaton for computing the similarity between pairs of strings and a genetic method for adjusting its parameters. The fuzzy automaton models the edit operations needed to transform any string into another one. The selection of appropriate fuzzy operations and fuzzy membership values for the transitions leads to improve the system performance for a particular application.Publication Open Access On constructing efficient UAV aerodynamic surrogate models for digital twins(IEEE, 2024-07-31) Aláez Gómez, Daniel; Prieto Míguez, Manuel; Villadangos Alonso, Jesús; Astrain Escola, José Javier; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Gobierno de Navarra / Nafarroako GobernuaAerodynamic modeling and optimization for unmanned aerial vehicles (UAVs) are complex and computationally intensive tasks. Surrogate models have emerged as a powerful tool for increasing efficiency in the aircraft design and optimization process. We review and evaluate some modeling techniques, such as artificial neural networks and support vector regression, showing that Gaussian process regression generally provides a well-performing solution to this type of problem. We propose an active learning algorithm based on the relevance factor, that combines bias estimated from nearest-neighbor Euclidean distance and variance, to achieve higher accuracy with fewer compuational fluid dynamics (CFD) simulations. The obtained performance is evaluated using four 2-D test functions and an experimental CFD case, indicating that the proposed active learning approach outperforms classical random sampling techniques. Thanks to this architecture, the development process of a new commercial UAV can be significantly streamlined by expediting the testing phase through the use of DTs modeled more efficiently.Publication Open Access UAVradio: Radio link path loss estimation for UAVs(Elsevier, 2024) Aláez Gómez, Daniel; Celaya Echarri, Mikel; Azpilicueta Fernández de las Heras, Leyre; Villadangos Alonso, Jesús; Estadística, Informática y Matemáticas; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Estatistika, Informatika eta Matematika; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenThe UAVRadio Python module is a comprehensive toolkit designed to facilitate the analysis and prediction of radio signal path loss in Unmanned Aerial Vehicle (UAV) communication scenarios. The module encompasses a range of path loss models referenced from established literature, offering users a powerful and flexible framework for estimating signal attenuation in different UAV communication links. It is a versatile and modular tool that enables simple integration for optimizing UAV communication systems and ensuring reliable wireless connectivity in a variety of operational scenarios. The utility of this package is demonstrated through two relevant examples: an experimentally fit model comparison with other implemented models, and a UAV digital twin implementation example comparing different available models and frequencies. The examples are provided in the code repository along with comprehensive documentation.Publication Open Access An ontology-based system to avoid UAS flight conflicts and collisions in dense traffic scenarios(Elsevier, 2023) Martín Lammerding, David; Astrain Escola, José Javier; Córdoba Izaguirre, Alberto; Villadangos Alonso, Jesús; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Gobierno de Navarra / Nafarroako GobernuaNew Unmanned Aerial Systems (UAS) applications will increase air traffic densities in metropolitan regions. Collision avoidance systems (CAS) are a key component in integrating a high number of UAS into the airspace in a safe way. This paper presents a distributed, autonomous, and knowledge-based CAS, called Dronetology System (DroS), for UASs. The CAS proposed here is managed using a novel ontology, called Dronetology-cas, which allows to make autonomous decisions according to the knowledge inferred from the data gathered by the UAS. DroS is deployed as part of the payload of the UAS. So, it is designed to run in an embedded platform with limited processing capacity and low battery consumption. DroS collects data from sensors and collaborative elements to make smart decisions using knowledge obtained from collaborative UASs, adapting the maneuvers of the aerial vehicles to their original flight plans, their kind of vehicle, and the collision scenario. DroS accountability involves recording its internal operation to assist with reconstructing the circumstances surrounding an autonomous maneuver or the details previous to a collision. DroS has been verified using the hardware in the loop (HIL) technique with a UAS traffic environment simulator. Results obtained show a significant improvement in terms of safety by avoiding collisions.Publication Open Access Técnicas eficientes de filtrado y análisis de tráfico para la monitorización continua de redes de comunicaciones(1999) Ruiz, José Javier; Magaña Lizarrondo, Eduardo; Aracil Rico, Javier; Villadangos Alonso, Jesús; Automática y Computación; Automatika eta KonputazioaThis paper presents an efficient traffic filtering and analysis architecture for network monitoring. Opposed to the usual network monitoring architectures that provide simultaneous filters as requested by managers (packet filters), we propose a different approach that aims at minimizing CPU load by avoiding unnecessary filter duplicates. Such architecture makes it possible to optimize several parallel filters execution and thus is suitable for continuous network monitoring in which it is necessary to keep track of hundreds of filters. This architecture has been implemented in a network-monitoring tool called PROMIS whose main features are detailed in this paper.Publication Open Access Radio characterization for ISM 2.4 GHz wireless sensor networks for judo monitoring applications(MDPI, 2014) López Iturri, Peio; Aguirre Gallego, Erik; Azpilicueta Fernández de las Heras, Leyre; Astrain Escola, José Javier; Villadangos Alonso, Jesús; Falcone Lanas, Francisco; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Ingeniería Matemática e Informática; Matematika eta Informatika IngeniaritzaIn this work, the characterization of the radio channel for ISM 2.4GHz Wireless Sensor Networks (WSNs) for judo applications is presented. The environments where judo activity is held are usually complex indoor scenarios in terms of radiopropagation due to their morphology, the presence of humans and the electromagnetic interference generated by personal portable devices, wireless microphones and other wireless systems used by the media. For the assessment of the impact that the topology and the morphology of these environments have on electromagnetic propagation, an in-house developed 3D ray-launching software has been used in this study. Time domain results as well as estimations of received power level have been obtained for the complete volume of a training venue of a local judo club’s facilities with a contest area with the dimensions specified by the International Judo Federation (IJF) for international competitions. The obtained simulation results have been compared with measurements, which have been carried out deploying ZigBee-compliant XBee Pro modules at presented scenario, using approved Judogis (jacket, trousers and belt). The analysis is completed with the inclusion of an in-house human body computational model. Such analysis has allowed the design and development of an in house application devoted to monitor the practice of judo, in order to aid referee activities, training routines and to enhance spectator experience.Publication Open Access Garantía de calidad de servicio basada en la predicción del ancho de banda(2001) Villadangos Alonso, Jesús; Magaña Lizarrondo, Eduardo; Automática y Computación; Automatika eta KonputazioaThis paper presents the architecture and performance evaluation of a neuronal estimator to predict network load in communication networks. System benchmarks are tested with real network traffic picked up from the 155 Mbps ATM Internet connection of the Universidad Pública de Navarra. The system shows good benefits in traffic prediction with 3 and 5 hours of advance. So the system shows characteristic of great interest to carry out the dynamic assignment of bandwidth in Internet Service Providers (ISPs), guaranteeing quality of service hired by the users.Publication Open Access IVAN: Intelligent van for the distribution of pharmaceutical drugs(MDPI, 2012) Moreno, Asier; Angulo Martínez, Ignacio; Perallos Ruiz, Asier; Landaluce, Hugo; García Zuazola, Ignacio Julio; Azpilicueta Fernández de las Heras, Leyre; Astrain Escola, José Javier; Falcone Lanas, Francisco; Villadangos Alonso, Jesús; Ingeniería Eléctrica y Electrónica; Ingeniería Matemática e Informática; Ingeniaritza Elektrikoa eta Elektronikoa; Matematika eta Informatika IngeniaritzaThis paper describes a telematic system based on an intelligent van which is capable of tracing pharmaceutical drugs over delivery routes from a warehouse to pharmacies, without altering carriers' daily conventional tasks. The intelligent van understands its environment, taking into account its location, the assets and the predefined delivery route; with the capability of reporting incidences to carriers in case of failure according to the established distribution plan. It is a non-intrusive solution which represents a successful experience of using smart environments and an optimized Radio Frequency Identification (RFID) embedded system in a viable way to resolve a real industrial need in the pharmaceutical industry. The combination of deterministic modeling of the indoor vehicle, the implementation of an ad-hoc radiating element and an agile software platform within an overall system architecture leads to a competitive, flexible and scalable solution.