Magaña Lizarrondo, Eduardo

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Magaña Lizarrondo

First Name

Eduardo

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 67
  • PublicationOpen Access
    Técnicas eficientes de filtrado de tráfico para monitorización de redes de comunicaciones
    (2001) Magaña Lizarrondo, Eduardo; Aracil Rico, Javier; Villadangos Alonso, Jesús; Automática y Computación; Automatika eta Konputazioa
    Las necesidades de intercambio de datos han crecido de manera espectacular en los últimos años y con ello la infraestructura de telecomunicaciones asociada. Además, la aparición de nuevos servicios ha requerido cada vez un control más estricto de la red. Por todo ello, la gestión de las redes de comunicaciones se ha convertido en un campo de actuación muy importante. Dentro de él se pueden enmarcar los sistemas de monitorización que ofrecen información detallada del tráfico que circula por las redes. En el presente trabajo se presenta un algoritmo de filtrado de paquetes con aplicación a los sistemas de monitorización de redes de datos que poseen una problemática particular. En concreto, el número de filtrados simultáneos que se suele requerir a los sistemas de monitorización es elevado. En una primera parte se presentan las diferentes alternativas existentes en la actualidad para el filtrado de paquetes. Por un lado están los sistemas packet filter, optimizados para filtrado de un único flujo de paquetes. Por otro lado existen multitud de propuestas para clasificación de paquetes en routers de alta velocidad, que sin embargo se centran únicamente en campos muy concretos del paquete como las direcciones IP destino para realizar la clasificación. También existen sistemas de filtrado o clasificación de paquetes en los propios sistemas operativos, para poder proveer de diferentes puntos de acceso a servicios a las aplicaciones de la misma máquina y para realizar el encaminamiento cuando la máquina posea varios interfaces de red. Existen escasas propuestas específicamente orientadas a sistemas de monitorización. Posteriormente se realiza una propuesta de técnica de filtrado que se aprovecha de las particularidades de los sistemas de monitorización: el algoritmo PAM-Tree. Su característica principal es la reutilización de bloques de subfiltrado con lo que se soporta de manera más adecuada un mayor número de filtros simultáneos. Además se incorporan en la propia estructura de filtrado los parámetros de monitorización por lo que la actualización de parámetros es inmediata a la vez que se realiza el proceso de filtrado de cada paquete. Tras su descripción, se realiza una formalización mediante teoría de autómatas que se aplica a la demostración de las propiedades del algoritmo propuesto. Una vez presentado el algoritmo, se pasa a un estudio analítico, modelando el coste de filtrado de un paquete como el tiempo de servicio en un sistema de colas M/G/1. Al comparar el modelo del algoritmo PAM-Tree con otro aplicable a los sistemas de tipo packet filter, se comprueba la mejora obtenida con PAM-Tree conforme crece el número de filtros. Tras ello, una comparativa experimental entre PAM-Tree y los packet filter BPF/LSF nos dará una visión más real del comportamiento del algoritmo propuesto sobre implementaciones de sistemas de monitorización. Los resultados experimentales obtenidos validan el modelo analítico considerado. El algoritmo propuesto se ha implementado en dos sistemas de monitorización implantados sobre las redes de datos de una empresa fabricante de coches y una operadora de cable regional, en dos versiones, una primera con funcionalidades recortadas. El algoritmo de filtrado es el núcleo fundamental de estas herramientas y su funcionamiento de terminará la flexibilidad en la definición de parámetros de monitorización de red por parte del gestor.
  • PublicationOpen Access
    Detección de congestión en la Internet europea
    (IEEE, 2007) Hernández, Ana; Magaña Lizarrondo, Eduardo; Izal Azcárate, Mikel; Morató Osés, Daniel; Automática y Computación; Automatika eta Konputazioa
    In this paper we present a study about the utilization of one-way delay measurements to detect and characterize network congestion in the european Internet. The experiments have been made using the ETOMIC platfom that allows one-way delay measurement with high precision timestamps. We have found a peculiar router behaviour in which the bottleneck is not the available bandwidth but it is the packet processing power of the router (backplane and CPU constraints). This router has been characterized with several network parameters. Some of them are the dependency of this limitation with the input data rate in packets per second, the size of burst packet losses measured in packets or time and the absence of specific scheduling algorithms in the router that could affect to larger flows.
  • PublicationOpen Access
    Crypto-ransomware detection using machine learning models in file-sharing network scenarios with encrypted traffic
    (Elsevier, 2022) Berrueta Irigoyen, Eduardo; Morató Osés, Daniel; Magaña Lizarrondo, Eduardo; Izal Azcárate, Mikel; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Ransomware is considered as a significant threat for home users and enterprises. In corporate scenarios, users’ computers usually store only system and program files, while all the documents are accessed from shared servers. In these scenarios, one crypto-ransomware infected host is capable of locking the access to all shared files it has access to, which can be the whole set of files from a workgroup of users. We propose a tool to detect and block crypto-ransomware activity based on file-sharing traffic analysis. The tool monitors the traffic exchanged between the clients and the file servers and using machine learning techniques it searches for patterns in the traffic that betray ransomware actions while reading and overwriting files. This is the first proposal designed to work not only for clear text protocols but also for encrypted file-sharing protocols. We extract features from network traffic that describe the activity opening, closing, and modifying files. The features allow the differentiation between ransomware activity and high activity from benign applications. We train and test the detection model using a large set of more than 70 ransomware binaries from 33 different strains and more than 2,400 h of ‘not infected’ traffic from real users. The results reveal that the proposed tool can detect all ransomware binaries described, including those not used in the training phase. This paper provides a validation of the algorithm by studying the false positive rate and the amount of information from user files that the ransomware could encrypt before being detected
  • PublicationOpen Access
    Ransomware early detection by the analysis of file sharing traffic
    (Elsevier, 2018) Morató Osés, Daniel; Berrueta Irigoyen, Eduardo; Magaña Lizarrondo, Eduardo; Izal Azcárate, Mikel; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    Crypto ransomware is a type of malware that locks access to user files by encrypting them and demands a ransom in order to obtain the decryption key. This type of malware has become a serious threat for most enterprises. In those cases where the infected computer has access to documents in network shared volumes, a single host can lock access to documents across several departments in the company. We propose an algorithm that can detect ransomware action and prevent further activity over shared documents. The algorithm is based on the analysis of passively monitored traffic by a network probe. 19 different ransomware families were used for testing the algorithm in action. The results show that it can detect ransomware activity in less than 20 s, before more than 10 files are lost. Recovery of even those files was also possible because their content was stored in the traffic monitored by the network probe. Several days of traffic from real corporate networks were used to validate a low rate of false alarms. This paper offers also analytical models for the probability of early detection and the probability of false alarms for an arbitrarily large population of users.
  • PublicationOpen Access
    Video over OBS Networks
    (2008) Espina Antolín, Félix; Morató Osés, Daniel; Izal Azcárate, Mikel; Magaña Lizarrondo, Eduardo; Automática y Computación; Automatika eta Konputazioa
  • PublicationOpen Access
    Open repository for the evaluation of ransomware detection tools
    (IEEE, 2020) Berrueta Irigoyen, Eduardo; Morató Osés, Daniel; Magaña Lizarrondo, Eduardo; Izal Azcárate, Mikel; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    Crypto-ransomware is a type of malware that encrypts user files, deletes the original data, and asks for ransom to recover the hijacked documents. Several articles have presented detection techniques for this type of malware; these techniques are applied before the ransomware encrypts files or during its action in an infected host. The evaluation of these proposals has always been accomplished using sets of ransomware samples that are prepared locally for the research article, without making the data available. Different studies use different sets of samples and different evaluation metrics, resulting in insufficient comparability. In this paper, we describe a public data repository containing the file access operations of more than 70 ransomware samples during the encryption of a large network shared directory. These data have already been used successfully in the evaluation of a network-based ransomware detection algorithm. Now, we are making these data available to the community and describing their details, how they were captured, and how they can be used in the evaluation and comparison of the results of most ransomware detection techniques.
  • PublicationOpen Access
    A proposal of burst cloning for video quality improvement in optical burst switching networks
    (2013) Espina Antolín, Félix; Morató Osés, Daniel; Izal Azcárate, Mikel; Magaña Lizarrondo, Eduardo; Automática y Computación; Automatika eta Konputazioa
  • PublicationOpen Access
    A survey on detection techniques for cryptographic ransomware
    (IEEE, 2019) Berrueta Irigoyen, Eduardo; Morató Osés, Daniel; Magaña Lizarrondo, Eduardo; Izal Azcárate, Mikel; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    Crypto-ransomware is a type of malware that encrypts user files, deletes the original data, and asks for a ransom to recover the hijacked documents. It is a cyber threat that targets both companies and residential users, and has spread in recent years because of its lucrative results. Several articles have presented classifications of ransomware families and their typical behaviour. These insights have stimulated the creation of detection techniques for antivirus and firewall software. However, because the ransomware scene evolves quickly and aggressively, these studies quickly become outdated. In this study, we surveyed the detection techniques that the research community has developed in recent years. We compared the different approaches and classified the algorithms based on the input data they obtain from ransomware actions, and the decision procedures they use to reach a classification decision between benign or malign applications. This is a detailed survey that focuses on detection algorithms, compared to most previous studies that offer a survey of ransomware families or isolated proposals of detection algorithms. We also compared the results of these proposals.
  • PublicationOpen Access
    Ingress traffic classification versus aggregation in video over OBS networks
    (2010) Izal Azcárate, Mikel; Espina Antolín, Félix; Morató Osés, Daniel; Magaña Lizarrondo, Eduardo; Automática y Computación; Automatika eta Konputazioa
    Optical Burst Switched (OBS) networks may become a backbone technology for video-on-demand providers. This work addresses the problem of dimensioning the access link of an ingress node to the optical core network in a video over OBS scenario. A video-ondemand provider using an OBS transport network will have to deliver traffic to a set of egress destinations. A large part of this traffic would be composed of video streaming traffic. However, in a real network there would be also a fraction of non video traffic related to non video services. This work studies the decision whether it is better to gather all traffic to the same destination in a joint burst assembler or separate video and general data traffic on different burs assemblers. The later may increase burst blocking probability but also allow for better tuning of OBS parameters that help improve video reception quality. Result show that this tuning of parameters is not enough to compensate the drop probability increase and thus it is better to aggregate video and general data traffic.
  • PublicationOpen Access
    Delay-throughput curves for timer-based OBS burstifiers with light load
    (IEEE, 2006) Izal Azcárate, Mikel; Aracil Rico, Javier; Morató Osés, Daniel; Magaña Lizarrondo, Eduardo; Automática y Computación; Automatika eta Konputazioa
    The OBS burstifier delay-throughput curves are analyzed in this paper. The burstifier incorporates a timer-based scheme with minimum burst size, i. e., bursts are subject to padding in light-load scenarios. Precisely, due to this padding effect, the burstifier normalized throughput may not be equal to unity. Conversely, in a high-load scenario, padding will seldom occur. For the interesting light-load scenario, the throughput delay curves are derived and the obtained results are assessed against those obtained by trace-driven simulation. The influence of long-range dependence and instantaneous variability is analyzed to conclude that there is a threshold timeout value that makes the throughput curves flatten out to unity. This result motivates the introduction of adaptive burstification algorithms, that provide a timeout value that minimizes delay, yet keeping the throughput very close to unity. The dependence of such optimum timeout value with traffic long-range dependence and instantaneous burstiness is discussed. Finally, three different adaptive timeout algorithms are proposed, that tradeoff complexity versus accuracy.