Ros Ganuza, Javier

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Ros Ganuza

First Name

Javier

person.page.departamento

Ingeniería

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 6 of 6
  • PublicationOpen Access
    Along-the-path exponential integration for Floquet stability analysis of wind turbines
    (IOP Publishing, 2022) Ros Ganuza, Javier; Olcoz Alonso, Álvaro; Plaza Puértolas, Aitor; Zientziak; Institute of Smart Cities - ISC; Ciencias; Gobierno de Navarra / Nafarroako Gobernua
    Traditionally, stability assessment of wind turbines has been performed by eigenanalysis of the azimuthally-averaged linearized system after applying the Multi-Blade Coordinate (MBC) transformation. However, due to internal or external anisotropy, the MBC transform does not produce an exact Linear Time-Invariant (LTI) system, and a Floquet analysis is required to capture the influence of all periodic terms, leading to a more accurate stability analysis. In this paper exponential integration methods that use system linearizations at different blade azimuth positions are used to integrate the perturbed system state and compute the Floquet monodromy matrix. The proposed procedure is assessed for a simple 6 DOF wind turbine model and a more complex aeroelastic model of a 5MW onshore wind turbine. The defined along-the-path or moving-point exponential integrator is found to be the suitable in order to perform a Floquet stability analysis even using a coarse linearization grid.
  • PublicationOpen Access
    Estimation of lateral track irregularity through Kalman filtering techniques
    (IEEE, 2021) Muñoz Moreno, Sergio; Ros Ganuza, Javier; Urda, Pedro; Escalona, José L.; Ingeniería; Ingeniaritza
    The aim of this work is to develop a model-based methodology for monitoring lateral track irregularities based on the use of inertial sensors mounted on an in-service train. To this end, a gyroscope is used to measure the wheelset yaw angular velocity and two accelerometers are used to measure lateral acceleration of the wheelset and the bogie frame. The main contribution of the present work is the development of a very efficient Kalman-based monitoring strategy to estimate the lateral track irregularities. The Kalman filter is based on a highly simplified linear bogie model that is able to capture the most relevant dynamic behaviour of the vehicle. The behaviour of the designed filter is assessed through the use of a detailed multibody model of an in-service vehicle running on a straight track with realistic irregularities. The model output is used to generate virtual measurements that are subsequently used to run the filter and validate the proposed estimator. In addition, the equivalent parameters of the simplified model are identified based on these simulations. In order to prove the robustness of the proposed technique, a systematic parametric analysis has been performed. The results obtained with the proposed method are promising, showing high accuracy and robustness for monitoring lateral alignment on straight tracks, with a very low computational cost.
  • PublicationOpen Access
    Triaxial accelerometer based azimuth estimator for horizontal axis wind turbines
    (Elsevier, 2023) Plaza Puértolas, Aitor; Ros Ganuza, Javier; Gainza González, Gorka; Fuentes Lárez, José David; Ingeniería; Ingeniaritza; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    One of the elements that receives the greatest stresses is the main shaft. Its damage is directly related to the cyclical nature of its rotational motion. However, the vast majority of horizontal axis wind turbines (HAWT) do not have sensors to measure the main-shaft angular position (azimuth), or they are not always easily accessible. Using a main-shaft placed single triaxial accelerometer for the estimation of the azimuth is proposed as a low intrusion approach that can be easily deployed in machines already in use. An approach using a tandem of two extended Kalman filters (calibration/prediction), aiming for a precise and robust estimation, is presented. The estimator is able to calibrate for accelerometer positional and orientation errors, as well as for bias drift. To simplify the burden of deployment, a simple procedure is proposed to determine the covariance matrices for a particular HAWT from those determined in a synthetic case. The proposed approach is analyzed using synthetic data, OpenFAST simulation of NREL-5MW HAWT. It outperforms the ATAN naive approach by an order of magnitude, showing errors smaller than 0.4o. The filter shows a good behavior, coherent with that of the synthetic setup, when tested on experimental data obtained from a 3MW HAWT.
  • PublicationOpen Access
    Mode-displacement method for structural dynamic analysis of bio-inspired structures: a palm-tree stem subject to wind effects
    (Taylor & Francis, 2022) Plaza Puértolas, Aitor; Vargas Silva, Gustavo Adolfo; Iriarte Goñi, Xabier; Ros Ganuza, Javier; Ingeniería; Ingeniaritza
    Biological materials (orthotropic materials), like wood, can offer good mechanical properties with a minimum amount of material, making their internal structure the suitable one to be applied on bio-inspired structures. The knowledge of the exceptional structural performance of palm trees, and specially its response to different loading conditions, provides useful information when lightweight structures with high slenderness ratio are desired. Recent researches focused on the analysis of palm trees subject to static loading conditions, ignoring the fluctuating nature of the wind speed. The purpose of this study is to simulate in a computational efficient way the effect of dynamic loading conditions applied on palm trees. Using the mode displacement method, the number of degrees of freedom of a dynamic finite element analysis can be drastically reduced with a minimal loss of accuracy. It was applied to simulate the behavior of structures comprised of an orthotropic material subject to a stochastic dynamic load. The influence of the number of selected degrees of freedom has also been studied. In addition, an exponential integration method is proposed to perform the time integration procedure. The results obtained show that a properly reduced model suitably represents the full finite element model without any appreciable loss of accuracy; it is also shown that computational cost can be drastically reduced. This method could give an appropriate computational representation of the behavior of orthotropic structures, and it could be used for studying more complex bio-inspired structures.
  • PublicationOpen Access
    Optimal strain-gauge placement for mechanical load estimation in circular cross-section shafts
    (Elsevier, 2021) Iriarte Goñi, Xabier; Aginaga García, Jokin; Gainza González, Gorka; Ros Ganuza, Javier; Bacaicoa Díaz, Julen; Institute of Smart Cities - ISC
    The customary electrical circuit configuration for estimating mechanical loads with strain gauges uses Wheatstone full- or half-bridges. For each mechanical load to be estimated, a dedicated bridge with two or four gauges has to be mounted, placing the strain gauges in specific configurations along the measured part. In this paper the strain of individual gauges is measured by means of quarter-bridges and all the mechanical loads exerted on a shaft are estimated jointly as different linear combinations of the strains of the gauges. The location of the gauges on the shaft are determined optimally and the influence of apparent strain related to temperature variations is avoided. Results show several configurations of reduced sets of gauges capable of optimally estimating the six components of the mechanical loads exerted on a circular cross-section shaft. The validation of the approach in a dedicated rig has shown the complexity of its experimental implementation.
  • PublicationOpen Access
    Optimal strain gauge configurations for the estimation of mechanical loads in the main shaft of HAWT
    (IOP Publishing, 2020) Iriarte Goñi, Xabier; Aginaga García, Jokin; Lerga Valencia, Francisco Javier; Gainza González, Gorka; Ros Ganuza, Javier; Bacaicoa Díaz, Julen; Ingeniaritza; Institute of Smart Cities - ISC; Ingeniería
    In Structural Health Monitoring of wind turbines, measuring the mechanical loads is a key issue. The customary techniques for this task use a full-bridge strain gauge configuration to measure each of the six load components exerted on the shaft. However, using only six strain gauges should be sufficient to estimate the six load components if a one-to-one correspondence was achieved. In this paper a different approach to mechanical loads estimation is presented where, measuring the strain of individual gauges in quarter-bridge configurations, it is possible to estimate all the load components from a single set of gauges. The configurations are optimally determined making use of the D-optimality criterion, which maximises the observability of the estimated components. The approach also provides configurations where the apparent strain related to temperature variations is automatically compensated. Results show several optimal configurations for different measuring conditions and shows that six strain gauges are enough to estimate all the load components. The new approach also opens the possibility to obtain configurations with more strain gauges as well as configurations that have to meet other requirements.