Paternain Dallo, Daniel

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Paternain Dallo

First Name

Daniel

person.page.departamento

Estadística, Informática y Matemáticas

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 19
  • PublicationOpen Access
    A supervised fuzzy measure learning algorithm for combining classifiers
    (Elsevier, 2023) Uriz Martín, Mikel Xabier; Paternain Dallo, Daniel; Bustince Sola, Humberto; Galar Idoate, Mikel; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Fuzzy measure-based aggregations allow taking interactions among coalitions of the input sources into account. Their main drawback when applying them in real-world problems, such as combining classifier ensembles, is how to define the fuzzy measure that governs the aggregation and specifies the interactions. However, their usage for combining classifiers has shown its advantage. The learning of the fuzzy measure can be done either in a supervised or unsupervised manner. This paper focuses on supervised approaches. Existing supervised approaches are designed to minimize the mean squared error cost function, even for classification problems. We propose a new fuzzy measure learning algorithm for combining classifiers that can optimize any cost function. To do so, advancements from deep learning frameworks are considered such as automatic gradient computation. Therefore, a gradient-based method is presented together with three new update policies that are required to preserve the monotonicity constraints of the fuzzy measures. The usefulness of the proposal and the optimization of cross-entropy cost are shown in an extensive experimental study with 58 datasets corresponding to both binary and multi-class classification problems. In this framework, the proposed method is compared with other state-of-the-art methods for fuzzy measure learning.
  • PublicationOpen Access
    Additional feature layers from ordered aggregations for deep neural networks
    (IEEE, 2020) Domínguez Catena, Iris; Paternain Dallo, Daniel; Galar Idoate, Mikel; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    In the last years we have seen huge advancements in the area of Machine Learning, specially with the use of Deep Neural Networks. One of the most relevant examples is in image classification, where convolutional neural networks have shown to be a vital tool, hard to replace with any other techniques. Although aggregation functions, such as OWA operators, have been previously used on top of neural networks, usually to aggregate the outputs of different networks or systems (ensembles), in this paper we propose and explore a new way of using OWA aggregations in deep learning. We implement OWA aggregations as a new layer inside a convolutional neural network. These layers are used to learn additional order-based information from the feature maps of a certain layer, and then the newly generated information is used as a complement input for the following layers. We carry out several tests introducing the new layer in a VGG13-based reference network and show that this layer introduces new knowledge into the network without substantially increasing training times.
  • PublicationOpen Access
    A study of different families of fusion functions for combining classifiers in the one-vs-one strategy
    (Springer, 2018) Uriz Martín, Mikel Xabier; Paternain Dallo, Daniel; Jurío Munárriz, Aránzazu; Bustince Sola, Humberto; Galar Idoate, Mikel; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika
    In this work we study the usage of different families of fusion functions for combining classifiers in a multiple classifier system of One-vs-One (OVO) classifiers. OVO is a decomposition strategy used to deal with multi-class classification problems, where the original multi-class problem is divided into as many problems as pair of classes. In a multiple classifier system, classifiers coming from different paradigms such as support vector machines, rule induction algorithms or decision trees are combined. In the literature, several works have addressed the usage of classifier selection methods for these kinds of systems, where the best classifier for each pair of classes is selected. In this work, we look at the problem from a different perspective aiming at analyzing the behavior of different families of fusion functions to combine the classifiers. In fact, a multiple classifier system of OVO classifiers can be seen as a multi-expert decision making problem. In this context, for the fusion functions depending on weights or fuzzy measures, we propose to obtain these parameters from data. Backed-up by a thorough experimental analysis we show that the fusion function to be considered is a key factor in the system. Moreover, those based on weights or fuzzy measures can allow one to better model the aggregation problem.
  • PublicationOpen Access
    A study of OWA operators learned in convolutional neural networks
    (MDPI, 2021) Domínguez Catena, Iris; Paternain Dallo, Daniel; Galar Idoate, Mikel; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Ordered Weighted Averaging (OWA) operators have been integrated in Convolutional Neural Networks (CNNs) for image classification through the OWA layer. This layer lets the CNN integrate global information about the image in the early stages, where most CNN architectures only allow for the exploitation of local information. As a side effect of this integration, the OWA layer becomes a practical method for the determination of OWA operator weights, which is usually a difficult task that complicates the integration of these operators in other fields. In this paper, we explore the weights learned for the OWA operators inside the OWA layer, characterizing them through their basic properties of orness and dispersion. We also compare them to some families of OWA operators, namely the Binomial OWA operator, the Stancu OWA operator and the expo-nential RIM OWA operator, finding examples that are currently impossible to generalize through these parameterizations.
  • PublicationOpen Access
    On the influence of interval normalization in IVOVO fuzzy multi-class classifier
    (Springer, 2019) Uriz Martín, Mikel Xabier; Paternain Dallo, Daniel; Bustince Sola, Humberto; Galar Idoate, Mikel; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y Matemáticas; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, PJUPNA13
    IVOVO stands for Inverval-Valued One-Vs-One and is the combination of IVTURS fuzzy classifier and the One-Vs-One strategy. This method is designed to improve the performance of IVTURS in multi-class problems, by dividing the original problem into simpler binary ones. The key issue with IVTURS is that interval-valued confidence degrees for each class are returned and, consequently, they have to be normalized for applying a One-Vs-One strategy. However, there is no consensus on which normalization method should be used with intervals. In IVOVO, the normalization method based on the upper bounds was considered as it maintains the admissible order between intervals and also the proportion of ignorance, but no further study was developed. In this work, we aim to extend this analysis considering several normalizations in the literature. We will study both their main theoretical properties and empirical performance in the final results of IVOVO.
  • PublicationOpen Access
    Diseño y captura de una base de datos para el reconocimiento de emociones minimizando sesgos
    (CAEPIA, 2024) Jurío Munárriz, Aránzazu; Pascual Casas, Rubén; Domínguez Catena, Iris; Paternain Dallo, Daniel; Galar Idoate, Mikel; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertistate Publikoa; Gobierno de Navarra / Nafarroako Gobernua
    El reconocimiento de emociones a partir de expresiones faciales (FER) es un campo de investigación importante para la interacción persona-máquina. Sin embargo, los conjuntos de datos utilizados para entrenar modelos FER a menudo contienen sesgos demográficos que pueden conducir a la discriminación en el modelo final. En este trabajo, presentamos el diseño y la captura realizados para la creación de una nueva base de datos para FER, donde tratamos de minimizar los sesgos desde el propio diseño. La base de datos se ha creado utilizando diferentes métodos de captura. Para comprobar la reducción de los sesgos alcanzada, analizamos diferentes métricas de sesgo representacional y estereotípico sobre la base de datos generada y la comparamos frente a otras bases de datos estándar en la literatura de FER.
  • PublicationOpen Access
    Less can be more: representational vs. stereotypical gender bias in facial expression recognition
    (Springer, 2024-10-14) Domínguez Catena, Iris; Paternain Dallo, Daniel; Jurío Munárriz, Aránzazu; Galar Idoate, Mikel; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Universidad Publica de Navarra / Nafarroako Unibertsitate Publikoa
    Machine learning models can inherit biases from their training data, leading to discriminatory or inaccurate predictions. This is particularly concerning with the increasing use of large, unsupervised datasets for training foundational models. Traditionally, demographic biases within these datasets have not been well-understood, limiting our ability to understand how they propagate to the models themselves. To address this issue, this paper investigates the propagation of demographic biases from datasets into machine learning models. We focus on the gender demographic component, analyzing two types of bias: representational and stereotypical. For our analysis, we consider the domain of facial expression recognition (FER), a field known to exhibit biases in most popular datasets. We use Affectnet, one of the largest FER datasets, as our baseline for carefully designing and generating subsets that incorporate varying strengths of both representational and stereotypical bias. Subsequently, we train several models on these biased subsets, evaluating their performance on a common test set to assess the propagation of bias into the models¿ predictions. Our results show that representational bias has a weaker impact than expected. Models exhibit a good generalization ability even in the absence of one gender in the training dataset. Conversely, stereotypical bias has a significantly stronger impact, primarily concentrated on the biased class, although it can also influence predictions for unbiased classes. These results highlight the need for a bias analysis that differentiates between types of bias, which is crucial for the development of effective bias mitigation strategies.
  • PublicationOpen Access
    DSAP: analyzing bias through demographic comparison of datasets
    (Elsevier, 2024-10-29) Domínguez Catena, Iris; Paternain Dallo, Daniel; Galar Idoate, Mikel; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Universidad Publica de Navarra / Nafarroako Unibertsitate Publikoa ; Gobierno de Navarra / Nafarroako Gobernua
    In the last few years, Artificial Intelligence (AI) systems have become increasingly widespread. Unfortunately, these systems can share many biases with human decision-making, including demographic biases. Often, these biases can be traced back to the data used for training, where large uncurated datasets have become the norm. Despite our awareness of these biases, we still lack general tools to detect, quantify, and compare them across different datasets. In this work, we propose DSAP (Demographic Similarity from Auxiliary Profiles), a two-step methodology for comparing the demographic composition of datasets. First, DSAP uses existing demographic estimation models to extract a dataset's demographic profile. Second, it applies a similarity metric to compare the demographic profiles of different datasets. While these individual components are well-known, their joint use for demographic dataset comparison is novel and has not been previously addressed in the literature. This approach allows three key applications: the identification of demographic blind spots and bias issues across datasets, the measurement of demographic bias, and the assessment of demographic shifts over time. DSAP can be used on datasets with or without explicit demographic information, provided that demographic information can be derived from the samples using auxiliary models, such as those for image or voice datasets. To show the usefulness of the proposed methodology, we consider the Facial Expression Recognition task, where demographic bias has previously been found. The three applications are studied over a set of twenty datasets with varying properties. The code is available at https://github.com/irisdominguez/DSAP.
  • PublicationOpen Access
    Generación ilimitada de personajes mediante Stable Diffusion con DreamBooth y LoRA
    (CAEPIA, 2024) Pascual Casas, Rubén; Maiza Coupin, Adrián Mikel; Sesma Sara, Mikel; Paternain Dallo, Daniel; Galar Idoate, Mikel; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, PJUPNA2023-11377; Gobierno de Navarra / Nafarroako Gobernua
    Este artículo aborda el reto de generar un número ilimitado de personajes nuevos, y distintos, que engloben el estilo y las características visuales compartidas de un conjunto limitado de personajes diseñados por un humano. Este es un problema de gran relevancia en la industria audiovisual, ya que la capacidad de producir rápidamente personajes originales que se adhieran a unas características específicas aumenta enormemente las posibilidades en la producción de películas, series o videojuegos. Nuestra solución se basa en DreamBooth, un método de ajuste de modelos generativos de texto a imagen ampliamente extendido. Proponemos una adaptación centrada en dos retos principales: lo poco práctico que resulta utilizar prompts detallados de las imágenes para describir los personajes y la complejidad del ajuste de modelos a partir de un conjunto limitado de personajes. Para resolver estos problemas, introducimos en el entrenamiento de DreamBooth tokens adicionales específicos para cada personaje y eliminamos el conjunto de datos de regularización. Para generar personajes de manera ilimitada, proponemos el uso de tokens y embeddings aleatorios. Comprobamos la utilidad de la propuesta utilizando dos conjuntos de datos diferentes. Los resultados obtenidos muestran la capacidad de nuestro método para producir personajes diversos que se adhieren a un estilo y a unas características visuales concretas. Finalmente, desarrollamos un estudio de ablación.
  • PublicationOpen Access
    An empirical study on supervised and unsupervised fuzzy measure construction methods in highly imbalanced classification
    (IEEE, 2020) Uriz Martín, Mikel Xabier; Paternain Dallo, Daniel; Bustince Sola, Humberto; Galar Idoate, Mikel; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y Matemáticas; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    The design of an ensemble of classifiers involves the definition of an aggregation mechanism that produces a single response obtained from the information provided by the classifiers. A specific aggregation methodology that has been studied in the literature is the use of fuzzy integrals, such as the Choquet or the Sugeno integral, where the associated fuzzy measure tries to represent the interaction existing between the classifiers of the ensemble. However, defining the big number of coefficients of a fuzzy measure is not a trivial task and therefore, many different algorithms have been proposed. These can be split into supervised and unsupervised, each class having different learning mechanisms and particularities. Since there is no clear knowledge about the correct method to be used, in this work we propose an experimental study for comparing the performance of eight different learning algorithms under the same framework of imbalanced dataset. Moreover, we also compare the specific fuzzy integral (Choquet or Sugeno) and their synergies with the different fuzzy measure construction methods.