A study of OWA operators learned in convolutional neural networks

Date

2021

Director

Publisher

MDPI
Acceso abierto / Sarbide irekia
Artículo / Artikulua
Versión publicada / Argitaratu den bertsioa

Project identifier

  • AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-108392GB-I00/ES/ recolecta
Impacto
No disponible en Scopus

Abstract

Ordered Weighted Averaging (OWA) operators have been integrated in Convolutional Neural Networks (CNNs) for image classification through the OWA layer. This layer lets the CNN integrate global information about the image in the early stages, where most CNN architectures only allow for the exploitation of local information. As a side effect of this integration, the OWA layer becomes a practical method for the determination of OWA operator weights, which is usually a difficult task that complicates the integration of these operators in other fields. In this paper, we explore the weights learned for the OWA operators inside the OWA layer, characterizing them through their basic properties of orness and dispersion. We also compare them to some families of OWA operators, namely the Binomial OWA operator, the Stancu OWA operator and the expo-nential RIM OWA operator, finding examples that are currently impossible to generalize through these parameterizations.

Description

Keywords

OWA operator, Aggregation functions, Orness, Convolutional neural network, Deep learning

Department

Institute of Smart Cities - ISC

Faculty/School

Degree

Doctorate program

item.page.cita

item.page.rights

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.

Licencia

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.