Paternain Dallo, Daniel

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Paternain Dallo

First Name

Daniel

person.page.departamento

Estadística, Informática y Matemáticas

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 24
  • PublicationOpen Access
    A survey on fingerprint minutiae-based local matching for verification and identification: taxonomy and experimental evaluation
    (Elsevier, 2015) Peralta, Daniel; Galar Idoate, Mikel; Triguero, Isaac; Paternain Dallo, Daniel; García, Salvador; Barrenechea Tartas, Edurne; Benítez, José Manuel; Bustince Sola, Humberto; Herrera, Francisco; Automática y Computación; Automatika eta Konputazioa
    Fingerprint recognition has found a reliable application for verification or identification of people in biometrics. Globally, fingerprints can be viewed as valuable traits due to several perceptions observed by the experts; such as the distinctiveness and the permanence on humans and the performance in real applications. Among the main stages of fingerprint recognition, the automated matching phase has received much attention from the early years up to nowadays. This paper is devoted to review and categorize the vast number of fingerprint matching methods proposed in the specialized literature. In particular, we focus on local minutiae-based matching algorithms, which provide good performance with an excellent trade-off between efficacy and efficiency. We identify the main properties and differences of existing methods. Then, we include an experimental evaluation involving the most representative local minutiae-based matching models in both verification and evaluation tasks. The results obtained will be discussed in detail, supporting the description of future directions.
  • PublicationOpen Access
    OWA operators based on admissible permutations
    (IEEE, 2019) Paternain Dallo, Daniel; Jin, LeSheng; Mesiar, Radko; Vavríková, Lucia; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, PJUPNA13
    In this work we propose a new OWA operator defined on bounded convex posets of a vector-lattice. In order to overcome the non-existence of a total order, which is necessary to obtain a non-decreasing arrangement of the input data, we use the concept of admissible permutation. Based on it, our proposal calculates the different ways in which the input vector could be arranged, always respecting the partial order. For each admissible arrangement, we calculate an intermediate value which is finally collected and averaged by means of the arithmetic mean. We analyze several properties of this operator and we give some counterexamples of those properties of aggregation functions which are not satisfied.
  • PublicationOpen Access
    Additional feature layers from ordered aggregations for deep neural networks
    (IEEE, 2020) Domínguez Catena, Iris; Paternain Dallo, Daniel; Galar Idoate, Mikel; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    In the last years we have seen huge advancements in the area of Machine Learning, specially with the use of Deep Neural Networks. One of the most relevant examples is in image classification, where convolutional neural networks have shown to be a vital tool, hard to replace with any other techniques. Although aggregation functions, such as OWA operators, have been previously used on top of neural networks, usually to aggregate the outputs of different networks or systems (ensembles), in this paper we propose and explore a new way of using OWA aggregations in deep learning. We implement OWA aggregations as a new layer inside a convolutional neural network. These layers are used to learn additional order-based information from the feature maps of a certain layer, and then the newly generated information is used as a complement input for the following layers. We carry out several tests introducing the new layer in a VGG13-based reference network and show that this layer introduces new knowledge into the network without substantially increasing training times.
  • PublicationOpen Access
    Dissimilarity based choquet integrals
    (Springer, 2020) Bustince Sola, Humberto; Mesiar, Radko; Fernández Fernández, Francisco Javier; Galar Idoate, Mikel; Paternain Dallo, Daniel; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika
    In this paper, in order to generalize the Choquet integral, we replace the difference between inputs in its definition by a restricted dissimilarity function and refer to the obtained function as d-Choquet integral. For some particular restricted dissimilarity function the corresponding d-Choquet integral with respect to a fuzzy measure is just the ‘standard’ Choquet integral with respect to the same fuzzy measure. Hence, the class of all d-Choquet integrals encompasses the class of all 'standard' Choquet integrals. This approach allows us to construct a wide class of new functions, d-Choquet integrals, that are possibly, unlike the 'standard' Choquet integral, outside of the scope of aggregation functions since the monotonicity is, for some restricted dissimilarity function, violated and also the range of such functions can be wider than [0, 1], in particular it can be [0, n].
  • PublicationOpen Access
    Some preference involved aggregation models for basic uncertain information using uncertainty transformation
    (IOS Press, 2020) Yang, RouJian; Jin, LeSheng; Paternain Dallo, Daniel; Yager, Ronald R.; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika
    In decision making, very often the data collected are with different extents of uncertainty. The recently introduced concept, Basic Uncertain Information (BUI), serves as one ideal information representation to well model involved uncertainties with different extents. This study discusses some methods of BUI aggregation by proposing some uncertainty transformations for them. Based on some previously obtained results, we at first define Iowa operator with poset valued input vector and inducing vector. The work then defines the concept of uncertain system, on which we can further introduce the multi-layer uncertainty transformation for BUI. Subsequently, we formally introduce MUT-Iowa aggregation procedure, which has good potential to more and wider application areas. A numerical example is also offered along with some simple usage of it in decision making.
  • PublicationOpen Access
    Extensions of fuzzy sets in image processing: an overview
    (EUSFLAT, 2011) Pagola Barrio, Miguel; Barrenechea Tartas, Edurne; Bustince Sola, Humberto; Fernández Fernández, Francisco Javier; Galar Idoate, Mikel; Jurío Munárriz, Aránzazu; López Molina, Carlos; Paternain Dallo, Daniel; Sanz Delgado, José Antonio; Couto, Pedro; Melo-Pinto, Pedro; Automática y Computación; Automatika eta Konputazioa
    This work presents a valuable review for the interested reader of the recent Works using extensions of fuzzy sets in image processing. The chapter is divided as follows: first we recall the basics of the extensions of fuzzy sets, i.e. Type 2 fuzzy sets, interval-valued fuzzy sets and Atanassov’s intuitionistic fuzzy sets. In sequent sections we review the methods proposed for noise removal (sections 3), image enhancement (section 4), edge detection (section 5) and segmentation (section 6). There exist other image segmentation tasks such as video de-interlacing, stereo matching or object representation that are not described in this work.
  • PublicationOpen Access
    Pointwise aggregation of maps: its structural functional equation and some applications to social choice theory
    (Elsevier, 2017) Miguel Turullols, Laura de; Campión Arrastia, María Jesús; Candeal, Juan Carlos; Induráin Eraso, Esteban; Paternain Dallo, Daniel; Automática y Computación; Matemáticas; Automatika eta Konputazioa; Matematika; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    We study a structural functional equation that is directly related to the pointwise aggregation of a finite number of maps from a given nonempty set into another. First we establish links between pointwise aggregation and invariance properties. Then, paying attention to the particular case of aggregation operators of a finite number of real-valued functions, we characterize several special kinds of aggregation operators as strictly monotone modifications of projections. As a case study, we introduce a first approach of type-2fuzzy sets via fusion operators. We develop some applications and possible uses related to the analysis of properties of social evaluation functionals in social choice, showing that those functionals can actually be described by using methods that derive from this setting.
  • PublicationOpen Access
    A survey of fingerprint classification Part I: taxonomies on feature extraction methods and learning models
    (Elsevier, 2015) Galar Idoate, Mikel; Derrac, Joaquín; Peralta, Daniel; Triguero, Isaac; Paternain Dallo, Daniel; López Molina, Carlos; García, Salvador; Benítez, José Manuel; Pagola Barrio, Miguel; Barrenechea Tartas, Edurne; Bustince Sola, Humberto; Herrera, Francisco; Automática y Computación; Automatika eta Konputazioa
    This paper reviews the fingerprint classification literature looking at the problem from a double perspective. We first deal with feature extraction methods, including the different models considered for singular point detection and for orientation map extraction. Then, we focus on the different learning models considered to build the classifiers used to label new fingerprints. Taxonomies and classifications for the feature extraction, singular point detection, orientation extraction and learning methods are presented. A critical view of the existing literature have led us to present a discussion on the existing methods and their drawbacks such as difficulty in their reimplementation, lack of details or major differences in their evaluations procedures. On this account, an experimental analysis of the most relevant methods is carried out in the second part of this paper, and a new method based on their combination is presented.
  • PublicationOpen Access
    On the influence of interval normalization in IVOVO fuzzy multi-class classifier
    (Springer, 2019) Uriz Martín, Mikel Xabier; Paternain Dallo, Daniel; Bustince Sola, Humberto; Galar Idoate, Mikel; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y Matemáticas; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, PJUPNA13
    IVOVO stands for Inverval-Valued One-Vs-One and is the combination of IVTURS fuzzy classifier and the One-Vs-One strategy. This method is designed to improve the performance of IVTURS in multi-class problems, by dividing the original problem into simpler binary ones. The key issue with IVTURS is that interval-valued confidence degrees for each class are returned and, consequently, they have to be normalized for applying a One-Vs-One strategy. However, there is no consensus on which normalization method should be used with intervals. In IVOVO, the normalization method based on the upper bounds was considered as it maintains the admissible order between intervals and also the proportion of ignorance, but no further study was developed. In this work, we aim to extend this analysis considering several normalizations in the literature. We will study both their main theoretical properties and empirical performance in the final results of IVOVO.
  • PublicationOpen Access
    Using the Choquet integral in the fuzzy reasoning method of fuzzy rule-based classification systems
    (MDPI, 2013) Barrenechea Tartas, Edurne; Bustince Sola, Humberto; Fernández Fernández, Francisco Javier; Paternain Dallo, Daniel; Sanz Delgado, José Antonio; Automática y Computación; Automatika eta Konputazioa
    In this paper we present a new fuzzy reasoning method in which the Choquet integral is used as aggregation function. In this manner, we can take into account the interaction among the rules of the system. For this reason, we consider several fuzzy measures, since it is a key point on the subsequent success of the Choquet integral, and we apply the new method with the same fuzzy measure for all the classes. However, the relationship among the set of rules of each class can be different and therefore the best fuzzy measure can change depending on the class. Consequently, we propose a learning method by means of a genetic algorithm in which the most suitable fuzzy measure for each class is computed. From the obtained results it is shown that our new proposal allows the performance of the classical fuzzy reasoning methods of the winning rule and additive combination to be enhanced whenever the fuzzy measure is appropriate for the tackled problem.