Rivero Fuente, Pedro J.

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Rivero Fuente

First Name

Pedro J.

person.page.departamento

Ingeniería

person.page.instituteName

InaMat2. Instituto de Investigación en Materiales Avanzados y Matemáticas

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 33
  • PublicationOpen Access
    Visible light activation of gold nanoparticles embedded into titanium dioxide surface in electrospun polymeric coatings
    (MDPI, 2024) Sandúa Fernández, Xabier; Rivero Fuente, Pedro J.; Calvopiña, Jonathan; Rodríguez Trías, Rafael; Ingeniería; Ingeniaritza; Institute for Advanced Materials and Mathematics - INAMAT2
    This work reports the development of a functional photocatalytic coating based on a combination of polymeric electrospun fibres and nanoparticles that is intended to be activated in the visible light range. In this sense, the resulting fibres can act as an effective matrix for the incorporation of titanium dioxide (TiO2) particles, which are covered by gold nanoparticles (AuNPs), in the outer surface of the metal oxide precursor. In the first step of the process, the optical properties of the nanoparticles were determined by UV-Vis spectroscopy. The extension of the visible absorption can be associated to the localized surface plasmon resonance (LSPR) of the metallic AuNPs. In addition, the resultant particle size distribution and average particle diameter was evaluated by dynamic light scattering (DLS) measurements. Furthermore, the phase composition and porosity of the functional particle powder were analysed by an XRD and N2 adsorption test. In the second step, these synthesized particles have been successfully immobilized into a PAA + β-CD electrospun fibre matrix by using the two different deposition methods of dip-coating and solution-casting, respectively. The morphological characterization of the samples was implemented by means of scanning electron microscopy (SEM), showing uniform and homogeneous, free-beaded fibres with a random distribution of the synthesized particles deposited onto the electrospun fibres. Then, the functional coatings were removed from the substrate, and a thermogravimetric (TGA) analysis was carried out for each sample in order to obtain the precursor mass immobilized in the coating. Once the overall mass of precursor was obtained, the percentage of TiO2 particles and AuNPs in the precursor was calculated by using inductively coupled plasma atomic emission spectrometry (ICP-AES). Finally, the photocatalytic activity of both functional solution and electrospun coatings were evaluated in terms of a gradual degradation of rhodamine B (RhB) dye after continuous exposition to a visible-light lamp.
  • PublicationOpen Access
    Nuevos enfoques metodológicos y docentes para la mejora del aprendizaje en el área de Ciencia de Materiales e Ingeniería Metalúrgica
    (SM, 2021) Rivero Fuente, Pedro J.; Ingeniería; Ingeniaritza; Institute for Advanced Materials and Mathematics - INAMAT2
    Uno de los principales retos de la enseñanza universitaria es saber motivar e incentivar el aprendizaje de los estudiantes. La utilización de modalidades educativas a distancia garantiza una formación flexible y facilita la autonomía en el aprendizaje. En este trabajo se presenta la implantación y la evolución de la asignatura online Functional Coatings en el ámbito de la Ingeniería que ha tenido una excelente acogida por parte de los estudiantes debido a la diversidad de los materiales y su alto grado de novedad.
  • PublicationOpen Access
    Icephobic and anticorrosion coatings deposited by electrospinning on aluminum alloys for aerospace applications
    (MDPI, 2021) Vicente Gómara, Adrián; Rivero Fuente, Pedro J.; García, Paloma; Mora, Julio; Carreño, Francisco; Rodríguez Trías, Rafael; Ingeniaritza; Institute for Advanced Materials and Mathematics - INAMAT2; Ingeniería
    Anti-icing or passive strategies have undergone a remarkable growth in importance as a complement for the de-icing approaches or active methods. As a result, many efforts for developing icephobic surfaces have been mostly dedicated to apply superhydrophobic coatings. Recently, a different type of ice-repellent structure based on slippery liquid-infused porous surfaces (SLIPS) has attracted increasing attention for being a simple and effective passive ice protection in a wide range of application areas, especially for the prevention of ice formation on aircrafts. In this work, the electrospinning technique has been used for the deposition of PVDF-HFP coatings on samples of the aeronautical alloy AA7075 by using a thickness control system based on the identification of the proper combination of process parameters such as the flow rate and applied voltage. In addition, the influence of the experimental conditions on the nanofiber properties is evaluated in terms of surface morphology, wettability, corrosion resistance, and optical transmittance. The experimental results showed an improvement in the micro/nanoscale structure, which optimizes the superhydro-phobic and anticorrosive behavior due to the air trapped inside the nanotextured surface. In addi-tion, once the best coating was selected, centrifugal ice adhesion tests (CAT) were carried out for two types of icing conditions (glaze and rime) simulated in an ice wind tunnel (IWT) on both as-deposited and liquid-infused coatings (SLIPs). The liquid-infused coatings showed a low water adhesion (low contact angle hysteresis) and low ice adhesion strength, reducing the ice adhesion four times with respect to PTFE (a well-known low-ice-adhesion material used as a reference).
  • PublicationOpen Access
    Setting a comprehensive strategy to face the runback icing phenomena
    (Elsevier, 2023) Mora, Julio; García, Paloma; Carreño, Francisco; González, Miguel; Gutiérrez, Marcos; Montes, Laura; Rico, Victor J.; López-Santos, Carmen; Vicente Gómara, Adrián; Rivero Fuente, Pedro J.; Rodríguez Trías, Rafael; Larumbe Abuin, Silvia; Acosta, Carolina; Ibáñez-Ibáñez, Pablo; Corozzi, Alessandro.; Raimondo, Mariarosa; Kozera, Rafal; Przybyszewski, Bartlomiej; González-Elipe, Agustín R.; Borrás, Ana; Redondo, Francisco; Agüero, Alina; Ingeniería; Ingeniaritza; Institute for Advanced Materials and Mathematics - INAMAT2
    The development of anti-icing robust surfaces is a hot topic nowadays and particularly crucial in the aeronautics or wind energy sectors as ice accretion can compromise safety and power generation efficiency. However, the current performance of most anti-icing strategies has been proven insufficient for such demanding applications, particularly in large unprotected zones, which located downstream from thermally protected areas, may undergo secondary icing. Herein, a new testing methodology is proposed to evaluate accretion mechanisms and secondary icing phenomena through, respectively, direct impact and running-wet processes and systematically applied to anti-icing materials including commercial solutions and the latest trends in the state-of-the-art. Five categories of materials (hard, elastomeric, polymeric matrix, SLIPS and superhydrophobic) with up to fifteen formulations have been tested. This Round-Robin approach provides a deeper understanding of anti-icing mechanisms revealing the strengths and weaknesses of each material. The conclusion is that there is no single passive solution for anti-ice protection. Thus, to effectively protect a given real component, different tailored materials fitted for each particular zone of the system are required. For this selection, shape analysis of such a component and the impact characteristics of water droplets under real conditions are needed as schematically illustrated for aeronautic turbines.
  • PublicationOpen Access
    Effect of Ti on microstructure, mechanical properties and corrosion behavior of a nickel-aluminum bronze alloy
    (ABM, ABC, ABPol, 2021-04-12) Rivero Fuente, Pedro J.; Berlanga Labari, Carlos; Palacio, José F.; Biezma Moraleda, María Victoria; Ingeniería; Ingeniaritza; Institute for Advanced Materials and Mathematics - INAMAT2
    Nickel-aluminum bronze (NAB) alloys are suitable, in cast condition, to be used in marine propellers due to its excellent behavior avoiding erosion and cavitation as well as corrosion. A complex microstructure, intrinsic to this copper base system, is the result of a well-controlled chemical composition. There are few works related to the effect of adding small quantities of specific chemical elements on NAB alloys properties. The aim of this paper is to study the effect of Ti on the microstructure, mechanical properties, and corrosion behavior of a particular NAB alloy, CuAl10Fe5Ni5 (C95500), and the comparison to the Ti-free NAB alloy. Although the as- cast microstructure is very similar for both materials, the addition of only 120 ppm Ti leads to a significant grain refinement that plays a key role on the mechanical properties. It has been observed an increase in both microhardness and nanohardness as well as in the resultant Young moduli values, meanwhile no significant impact on the corrosion susceptibility has been observed.
  • PublicationOpen Access
    A comparative study in the tribological behavior of DLC coatings deposited by HiPIMS technology with positive pulses
    (MDPI, 2020) García Lorente, José Antonio; Rivero Fuente, Pedro J.; Barba Areso, Eneko; Fernández, Iván; Santiago, José A.; Fuente, Gonzalo G.; Rodríguez Trías, Rafael; Ingeniaritza; Institute for Advanced Materials and Mathematics - INAMAT2; Ingeniería
    During the last few decades, diamond-like carbon (DLC) coatings were widely used for tribological applications, being an effective tool for improving the performance and the useful life of different machining tools. Despite its excellent properties, among which stand out a high hardness, a very low friction coefficient, and even an excellent wear resistance, one of the main drawbacks which limits its corresponding industrial applicability is the resultant adhesion in comparison with other commercially available deposition techniques. In this work, it is reported the tribological results of a scratch test, wear resistance, and nanoindentation of ta-C and WC:C DLC coatings deposited by means of a novel high-power impulse magnetron sputtering (HiPIMS) technology with 'positive pulses'. The coatings were deposited on 1.2379 tool steel which is of a high interest due to its great and wide industrial applicability. Finally, experimental results showed a considerable improvement in the tribological properties such as wear resistance and adhesion of both types of DLC coatings. In addition, it was also observed that the role of doping with W enables a significant enhancement on the adhesion for extremely high critical loads in the scratch tests.
  • PublicationOpen Access
    Designing multifunctional protective PVC electrospun fibers with tunable properties
    (MDPI, 2020) Rivero Fuente, Pedro J.; Rosagaray Burdaspar, Iker; Fuertes Bonel, Juan Pablo; Rodríguez Trías, Rafael; Ingeniaritza; Institute for Advanced Materials and Mathematics - INAMAT2; Ingeniería; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, PJUPNA1929
    In this work, the electrospinning technique is used for the fabrication of electrospun functional fibers with desired properties in order to show a superhydrophobic behavior. With the aim to obtain a coating with the best properties, a design of experiments (DoE) has been performed by controlling several inputs operating parameters, such as applied voltage, flow rate, and precursor polymeric concentration. In this work, the reference substrate to be coated is the aluminum alloy (60661T6), whereas the polymeric precursor is the polyvinyl chloride (PVC) which presents an intrinsic hydrophobic nature. Finally, in order to evaluate the coating morphology for the better performance, the following parameters-such as fiber diameter, surface roughness (Ra, Rq), optical properties, corrosion behavior, and wettability-have been deeply analyzed. To sum up, this is the first time that DoE has been used for the optimization of superhydrophobic or anticorrosive surfaces by using PVC precursor for the prediction of an adequate surface morphology as a function of the input operational parameters derived from electrospinning process with the aim to validate better performance.
  • PublicationOpen Access
    Icephobic coating based on novel SLIPS made of infused PTFE fibers for aerospace application
    (MDPI, 2024) Vicente Gómara, Adrián; Rivero Fuente, Pedro J.; Rehfeld, Nadine; Stake, Andreas; García, Paloma; Carreño, Francisco; Mora, Julio; Rodríguez Trías, Rafael; Ingeniería; Ingeniaritza; Institute for Advanced Materials and Mathematics - INAMAT2; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, PJUPNA1929
    The development of slippery surfaces has been widely investigated due to their excellent icephobic properties. A distinct kind of an ice-repellent structure known as a slippery liquid-infused porous surface (SLIPS) has recently drawn attention due to its simplicity and efficacy as a passive ice-protection method. These surfaces are well known for exhibiting very low ice adhesion values (τice < 20 kPa). In this study, pure Polytetrafluoroethylene (PTFE) fibers were fabricated using the electrospinning process to produce superhydrophobic (SHS) porous coatings on samples of the aeronautical alloy AA6061-T6. Due to the high fluorine–carbon bond strength, PTFE shows high resistance and chemical inertness to almost all corrosive reagents as well as extreme hydrophobicity and high thermal stability. However, these unique properties make PTFE difficult to process. For this reason, to develop PTFE fibers, the electrospinning technique has been used by an PTFE nanoparticles (nP PTFE) dispersion with addition of a very small amount of polyethylene oxide (PEO) followed with a sintering process (380 °C for 10 min) to melt the nP PTFE together and form uniform fibers. Once the porous matrix of PTFE fibers is attached, lubricating oil is added into the micro/nanoscale structure in the SHS in place of air to create a SLIPS. The experimental results show a high-water contact angle (WCA) ≈ 150° and low roll-off angle (αroll-off) ≈ 22° for SHS porous coating and a decrease in the WCA ≈ 100° and a very low αroll-off ≈ 15° for SLIPS coating. On one hand, ice adhesion centrifuge tests were conducted for two types of icing conditions (glaze and rime) accreted in an ice wind tunnel (IWT), as well as static ice at different ice adhesion centrifuge test facilities in order to compare the results for SHS, SLIPs and reference materials. This is considered a preliminary step in standardization efforts where similar performance are obtained. On the other hand, the ice adhesion results show 65 kPa in the case of SHS and 4.2 kPa of SLIPS for static ice and <10 kPa for rime and glace ice. These results imply a significant improvement in this type of coatings due to the combined effect of fibers PTFE and silicon oil lubricant.
  • PublicationOpen Access
    Comparative study of electrospun polydimethylsiloxane fibers as a substitute for fluorine-based polymeric coatings for hydrophobic and icephobic applications
    (MDPI, 2024-11-30) Vicente Gómara, Adrián; Rivero Fuente, Pedro J.; Santos, Cleis; Rehfeld, Nadine; Rodríguez Trías, Rafael; Ingeniería; Ingeniaritza; Institute for Advanced Materials and Mathematics - INAMAT2; Universidad Pública de Navarra / Nafarroako Univertsitate Publikoa, PJUPNA1929
    The development of superhydrophobic, waterproof, and breathable membranes, as well as icephobic surfaces, has attracted growing interest. Fluorinated polymers like PTFE or PVDF are highly effective, and previous research by the authors has shown that combining these polymers with electrospinning-induced roughness enhances their hydro- and ice-phobicity. The infusion of these electrospun mats with lubricant oil further improves their icephobic properties, achieving a slippery liquid-infused porous surface (SLIPS). However, their environmental impact has motivated the search for fluorine-free alternatives. This study explores polydimethylsiloxane (PDMS) as an ideal candidate because of its intrinsic properties, such as low surface energy and high flexibility, even at very low temperatures. While some published results have considered this polymer for icephobic applications, in this work, the electrospinning technique has been used for the first time for the fabrication of 95% pure PDMS fibers to obtain hydrophobic porous coatings as well as breathable and waterproof membranes. Moreover, the properties of PDMS made it difficult to process, but these limitations were overcome by adding a very small amount of polyethylene oxide (PEO) followed by a heat treatment process that provides a mat of uniform fibers. The experimental results for the PDMS porous coating confirm a hydrophobic behavior with a water contact angle (WCA) ≈ 118° and roll-off angle (αroll-off) ≈ 55°. In addition, the permeability properties of the fibrous PDMS membrane show a high transmission rate (WVD) ≈ 51.58 g∙m−2∙d−1, providing breathability and waterproofing. Finally, an ice adhesion centrifuge test showed a low ice adhesion value of 46 kPa. These results highlight the potential of PDMS for effective icephobic and waterproof applications.
  • PublicationOpen Access
    Corrosion of cast aluminum alloys: a review
    (MDPI, 2020-10-16) Berlanga Labari, Carlos; Biezma Moraleda, María Victoria; Rivero Fuente, Pedro J.; Ingeniería; Ingeniaritza; Institute for Advanced Materials and Mathematics - INAMAT2
    Research on corrosion resistance of cast aluminum alloys is reviewed in this article. The effect of the main microstructural features of cast aluminum alloys such as secondary dendrite arm spacing (SDAS), eutectic silicon morphology, grain size, macrosegregation, microsegregation, and intermetallic compounds is discussed. Moreover, the corrosion resistance of cast aluminum alloys obtained by modern manufacturing processes such as semi-solid and additive manufacturing are analyzed. Finally, the protective effects provided by different coatings on the aluminum cast alloys—such as anodized, plasma electrolytic oxidation (PEO), and laser—is reviewed. Some conclusions and future guidelines for future works are proposed.