Gil Bravo, Antonio
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Gil Bravo
First Name
Antonio
person.page.departamento
Ciencias
person.page.instituteName
InaMat2. Instituto de Investigación en Materiales Avanzados y Matemáticas
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
96 results
Search Results
Now showing 1 - 10 of 96
Publication Open Access Application of industrial wastes from chemically treated aluminum saline slags as adsorbents(American Chemical Society, 2018) Gil Bravo, Antonio; Arrieta Chango, Ekhine; Vicente, Miguel Ángel; Korili, Sophia A.; Institute for Advanced Materials and Mathematics - INAMAT2In this study, industrial wastes, which remain after aluminum extraction from saline slags, were used as adsorbents. The aluminum saline slags were treated under reflux with 2 mol/dm3 aqueous solutions of NaOH, H2SO4, and HCl for 2 h. After separation by filtration, aqueous solutions containing the extracted aluminum and residual wastes were obtained. The wastes were characterized by nitrogen adsorption at -196 °C, X-ray diffraction, scanning electron microscopy, and ammonia pulse chemisorption. The chemical treatment reduced the specific surface area, from 84 to 23 m2/g, and the pore volume, from 0.136 to 0.052 cm3/g, of the saline slag and increased the ammonia-adsorption capacity from 2.84 to 5.22 cm3/g, in the case of acid-treated solids. The materials were applied for the removal of Acid Orange 7 and Acid Blue 80 from aqueous solutions, considering both single and binary systems. The results showed interesting differences in the adsorption capacity between the samples. The saline slag treated with HCl rapidly adsorbed all of the dyes present in solution, whereas the other materials retained between 50 and 70% of the molecules present in solution. The amount of Acid Orange 7 removed by the nontreated material and by the material treated with NaOH increased in the presence of Acid Blue 80, which can be considered as a synergistic behavior. The CO2 adsorption of the solids at several temperatures up to 200 °C was also evaluated under dry conditions. The aluminum saline slag presented an adsorption capacity higher than the rest of treated samples, a behavior that can be explained by the specific sites of adsorption and the textural properties of the solids. The isosteric heats of CO2 adsorption, determined from the Clausius-Clapeyron equation, varied between 1.7 and 26.8 kJ/mol. The wastes should be used as adsorbents for the selective removal of organic contaminants in wastewater treatment.Publication Open Access Catalytic photodegradation of organic compounds using TiO2/pillared clays synthesized using a nonconventional aluminum source(Elsevier, 2022-10-15) Cardona Rodríguez, Yaneth; Wegrzyn, Agnieszka; Miskowiec, Pawel; Korili, Sophia A.; Gil Bravo, Antonio; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Ciencias; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaThis study evaluates the photocatalytic degradation of 2,6-dichlorophenol (2,6-DCP), triclosan (TCS) and bisphenol A (BPA) by ultraviolet (UV) and visible (VIS) light in the presence of TiO2/catalysts synthesized by wet impregnation followed by calcination. The catalyst supports used were three alumina pillared clays (Al-PILC) synthesized using various aluminum sources and montmorillonite (Mt) as raw material. One of the Al-PILC was prepared following the conventional method (Al-PILCCM), using a commercial aluminum salt, and the other two were synthesized using a saline slag, with the aluminum used being extracted with the alkaline (Al-PILCBE) or the acid (Al-PILCAE) method. Mt was impregnated with various amounts of titanium (1, 5, 10, and 20 wt% Ti) and evaluated for the photodegradation of the aforementioned pollutants, comparing the results with those obtained using commercial anatase. Due to the higher conversion rates, 10 and 20 wt% Ti were chosen to impregnate the Al-PILC and to evaluate the photocatalytic performance. All materials were characterized by several techniques, which confirmed the successful formation of TiO2 in the anatase phase. In all cases, photodegradation was higher when using UV light and the most photodegraded pollutant was TCS (85.15 ± 0.49%), followed by 2,6-DCP (65.43 ± 0.79%) and, to a lesser degree, BPA (36.15 ± 0.65%). Al-PILC showed higher photodegradation percentages, with Al-PILCAE exhibiting the highest values for both types of light. An analysis of the photoproducts by HPLC-MS suggested that the preferred pathway for TCS and 2,6-DCP photodegradation depends on the type of light used.Publication Embargo Sustainable biomass-derived activated biochar/polyaniline/alginate composite beads for enhanced methylene blue adsorption: experimental and theoretical investigations(Elsevier, 2025-05-01) Benamraoui, Faouzia; Kecir, Imene; Hechaichi, Chaima; Bourzami, Riahd; Boulahbal, Aziza Imene; Gil Bravo, Antonio; Boutahala, Mokhtar; Bounoukta, Charf Eddine; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2This study investigates biomass-derived adsorbents in powder and bead forms for the efficient removal of methylene blue MB from wastewater. Activated biochar powders (ABC and ABCZ) were synthesized using H3PO4 and ZnCl2 as activators for the chemical treatment of Crataegus azarolus CAS seed waste, while polyaniline (PA) and sodium alginate (SG) were integrated to form two bead-shaped composites. Compared to ZnCl2, H3PO4 activation produced similar acidic site concentrations but resulted in improved mesoporosity and larger pore diameters. Untreated lignin-like ABC and PA-functionalized ABC were successfully encapsulated into uniform composite beads (ABC-SG and ABC-PA-SG) with negatively charged surfaces at neutral pH of solution as confirmed by FTIR, TGA, and pHpzc analyses. Adsorption efficiency depended on material composition, form, and texture. Encapsulation significantly enhanced MB adsorption capacity, with ABC-PA-SG beads achieving 821 mg/g, compared to 261 mg/g for ABC powder. While greater surface area improved MB adsorption in powders, PA incorporation in composite beads contributed to higher adsorption performance. Kinetic modeling showed that MB adsorption on ABC powder was governed by chemisorption and pores filling, while composite beads followed a physical interaction-driven process. Thermodynamic analysis confirmed that adsorption was spontaneous and endothermic. Statistical modeling and DFT calculations provided deeper insights into the adsorption mechanisms. π-π interactions dominated MB adsorption, with a horizontal molecular arrangement. ABC powders exhibited multilayer pore filling on a heterogeneous surface, whereas adsorption on ABC-PA-SG beads followed a double-energy double-layer mechanism. This study provides integrated insights into biomass-derived composite beads adsorbents, highlighting their potential for sustainable wastewater treatment applications.Publication Open Access Optimization of the pentachlorophenol adsorption by organo-clays based on response surface methodology(MDPI, 2022) El Mahmoudi, Soufiane; Elmchaouri, Abdellah; El Kaimech, Assya; Gil Bravo, Antonio; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; CienciasThe aim of this study is to optimize the adsorption of pentachlorophenol (PCP) using an organo-clay under the response surface methodology. The adsorbent was selected from a montmorillonite exchanged by various cations, such as Fe3+, Al3+, Zn2+, Mg2+, Na+ , and modified by bromide cetyltrimethylammonium (CTAB) as surfactant. The obtained organo-montmorillonite was characterized using several techniques, such as Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and nitrogen adsorption, performed at −196 ◦C. The results showed an increase in basal space from 1.65 to 1.88 nm and a decrease in the specific surface and pore volume, with an increase in pore diameter, including the presence of characteristic bands of -CH2 - and -CH3 - groups at 2926 and 2854 cm−1 in the FTIR spectrum after the modification. The optimization of PCP removal by clay adsorbents is achieved using the response surface methodology (RSM) with a four-factor central composite model, including pH of solution, mass of adsorbent, contact time, and initial concentration. The results proved the validity of the regression model, wherein the adsorption capacity reaches its maximum value of 38 mg/g at a lower adsorbent mass of 20 mg, pH of 6, contact time (tc) of 5 h, and initial concentration of 8 mg/L.Publication Open Access Preparation of Ca2Al1–mFem(OH)6Cl 2H2O-doped hydrocalumites and application of their derived mixed oxides in the photodegradation of ibuprofen(MDPI, 2022) Jiménez, Alejandro; Valverde, Marta; Misol, Alexander; Trujillano, Raquel; Gil Bravo, Antonio; Vicente, Miguel Ángel; Institute for Advanced Materials and Mathematics - INAMAT2Aluminum from saline slags generated during the recycling of this metal, extracted under reflux conditions with aqueous NaOH, was used in the synthesis of hydrocalumite-type solids with the formula Ca2Al1–mFem(OH)6Cl 2H2O. The characterization of the obtained solids was carried out by powder X-ray diffraction, infrared spectroscopy, thermal analysis, element chemical analysis, N2 adsorption-desorption at -196ºC and electron microscopy. The results showed the formation of Layered Double Hydroxide-type compounds whose characteristics varied as the amount of incorporated Fe3+ increased. These solids were calcined at 400ºC and evaluated for the catalytic photodegradation of ibuprofen, showing promising results in the elimination of this drug by advanced oxidation processes. The CaAl photocatalyst (without Fe) showed the best performance under UV light for the photodegradation of ibuprofen.Publication Open Access Synthesis of Cu-Al layered double hydroxides from aluminum saline slags(Elsevier, 2023) Boulahbal, Aziza Imene; Santamaría Arana, Leticia; Azizi, A.; Boutahala, Mokhtar; Korili, Sophia A.; Gil Bravo, Antonio; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaThe use of saline slag, a hazardous waste generated during the recycling of aluminum, as aluminum source for the synthesis CuAl layered double hydroxides (LDH) is for the first time reported in this study. Due to the JahnTeller effect, divalent copper–aluminum LDH come usually with impurities and a pure CuAl LDH is not easy to obtain. The effect of synthesis pH has been examined by comparing LDH synthesized at various pH, ranging from 6 to 12 via a co-precipitation method using aluminum obtained from an alkaline extraction of the slag. For comparison purposes, a sample was synthesized at pH = 9 using commercial aluminum Al(NO3)3⋅9H2O instead of extracted aluminum. The effects of the aging time and calcination temperature are also discussed. The LDH and their calcined metal mixed oxide (layered double oxide, LDO) have been analyzed with several characterization techniques: powder X-ray diffraction (PXRD), N2 adsorption at − 196 ◦C, thermogravimetric analysis (TGA), temperature programmed reduction (TPR), scanning electron microscopy (SEM), transmission electron microscopy and energy-dispersive X-ray spectroscopy (TEM and EDS). Synthesis pH has been proved not only to have a significant effect on the nature of secondary phases but also on the structure and morphology of the samples.Publication Open Access Structure and activity of nickel supported on hibonite-type La-hexaaluminates synthesized from aluminum saline slags for the dry reforming of methane(Elsevier, 2021) Torrez Herrera, Jonathan Josué; Korili, Sophia A.; Gil Bravo, Antonio; Institute for Advanced Materials and Mathematics - INAMAT2; Ciencias; Zientziak; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaThis work describes the procedures followed to obtain four hibonite-type La-hexaaluminates (La-HA) using aluminum saline slag waste as the aluminum source. Briefly, an acid-extracted aluminum solution (8.9 gAl/L) was used to synthesize the hexaaluminate by mixing with a stoichiometric amount of lanthanum nitrate and 2-propanol/polyethylene glycol/methanol/1-hexanol/glucose depending on the hydrothermal conditions of the synthesis. The results showed the formation of pure-phase hexaaluminate at 1473 K in all cases, with differences in the textural properties between the materials. The solids obtained were used as supports for nickel catalysts (10 wt.%) for the dry reforming of methane (DRM) at 973 K. The supports and catalysts were characterized by X-ray diffraction (XRD), N2 adsorption at 77 K, X-ray fluorescence (XRF), temperature-programmed reduction (TPR), scanning electron microscopy (SEM) and transmission electron microscopy (HR-TEM). An effect of the textural properties, dispersión of the metallic phase and nickel-support interaction on the performance of the catalyst was found. Our results also show a new application of a catalyst synthesized from an industrial waste such as aluminum saline slags.Publication Open Access Effect of the surface properties of Me2+/Al layered double hydroxides synthesized from aluminum saline slag wastes on the adsorption removal of drugs(Elsevier, 2020) Santamaría Arana, Leticia; Devred, F.; Gaigneaux, E. M.; Korili, Sophia A.; Gil Bravo, Antonio; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Ciencias; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa; Gobierno de Navarra / Nafarroako Gobernua, PI017-PI039 CORRALThis work presents the synthesis of Me2+ (Co, Mg, Ni and Zn)/Al layered double hydroxides (LDH) with a 3:1 M ratio by the co-precipitation method. Structural characterization and comparison of the series has been achieved using powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), nitrogen physisorption at 77 K, thermogravimetry measurements (TGA), temperature-programmed reduction (TPR), X-ray photoelectron spectroscopy (XPS), ammonia temperature-programmed desorption (NH3-TPD) and point of zero charge (pHpzc). Batch experiments were performed to analyze the adsorption capacity of the different LDH on diclofenac and salicylic acid, as example of emergent pollutants. The pH, mass of adsorbent, contact time and concentration of pollutant were the parameters used to compare the adsorption performance of the synthesized materials. Samples showed different behavior and the equilibrium was reached at different times, Mg6Al2 and Zn6Al2 showed lower equilibrium times but had higher adsorption capacity. Various adsorption and isotherm equation models were employed to study both the kinetic and equilibrium results and, in general, the removal of diclofenac was greater than that of salicylic acid. 1-Butanol conversion was also used as a means of acidity and basicity characterization and the results were compared with the adsorption performance of the samples in order to explain the results found. A relationship between the amount of pollutants adsorbed and the butenes formed in the dehydrogenation reaction of 1-butanol was found.Publication Open Access Valorization of material wastes for environmental, energetic and biomedical applications(MDPI, 2022) Gil Bravo, Antonio; Ciencias; ZientziakThis is a reprint of articles from the Special Issue published online in the open access journal Eng-Advances in Engineering (ISSN 2673-4117) (available at: https://www.mdpi.com/journal/eng/ special issues/material wastes).Publication Embargo Improvement of the adsorption properties of an activated carbon coated by titanium dioxide for the removal of emerging contaminants(Elsevier, 2019) Taoufik, Nawal; Elmchaouri, Abdellah; Anouar, Fatna; Korili, Sophia A.; Gil Bravo, Antonio; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; CienciasThree activated carbon coated titanium dioxide composites are evaluated as adsorbents for the removal of three pharmaceutical compounds: clofibric, gallic and salicylic acids from aqueous solutions. These composite materials are characterized by several techniques as SEM, FT-IR, TGA and point of zero charge determination. The adsorption mechanism of acids was investigated and compared to the adsorption on the virgin carbon. The analysis of adsorption isotherms and kinetic properties reveals that the addition of TiO2 increased the adsorption capacities of the initial material. The adsorption kinetics has been studied in terms of pseudo-first and pseudo-second order kinetic models, and the Freundlich, Langmuir, Temkin, Tôth and Sips isotherms models have also been applied to the equilibrium adsorption data. The analysis of results indicated that the adsorption of acids on the activated carbon-titanium dioxide composites is well described by the pseudo-first order kinetic model and the Sips isotherm equation fitted the sorption experimental results better than other models.