Person:
Gil Bravo, Antonio

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Gil Bravo

First Name

Antonio

person.page.departamento

Ciencias

person.page.instituteName

InaMat2. Instituto de Investigación en Materiales Avanzados y Matemáticas

ORCID

0000-0001-9323-5981

person.page.upna

1806

Name

Search Results

Now showing 1 - 10 of 70
  • PublicationOpen Access
    Special issue: feature papers in Eng 2022
    (MDPI, 2023) Gil Bravo, Antonio; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2
    The aim of this second Eng Special Issue is to collect experimental and theoretical re-search relating to engineering science and technology. The general topics published in Eng are as follows: electrical, electronic and information engineering; chemical and materials engineering; energy engineering; mechanical and automotive engineering; industrial and manufacturing engineering; civil and structural engineering; aerospace engineering; biomedical engineering; geotechnical engineering and engineering geology; and ocean and environmental engineering. This editorial is an overview of the selected representative studies on these topics. This book contains 33 papers, including 2 Review papers and 1 Communication, published by several authors interested in new cutting-edge developments in the field of engineering. Recently, a subcategory of nanotechnology—nano- and microcontainers—has developed rapidly, with unexpected results. Nano- and microcontainers refer to hollow spherical structures in which the shells can be organic or inorganic. These containers can be filled with substances released when excited and can be used in corrosion healing, cancer therapy, cement healing, antifouling, etc. In the first review, the author summarizes the various innovative technologies that have beneficial effects on improving people’s lives [1].
  • PublicationOpen Access
    Synthesis strategies of alumina from aluminum saline slags
    (Elsevier, 2023) Grande López, Lucía; Vicente, Miguel Ángel; Korili, Sophia A.; Gil Bravo, Antonio; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Aluminum saline slags is a waste of the metallurgical industry that presents serious environmental problems since it needs very extensive areas for its disposal, the toxicity it causes in the atmosphere and groundwater, in addition to high transportation costs. The valorization of this residue by the synthesis of alumina, a compound widely used in the chemical industry, generates a high impact and great interest. In this work, the strategies for synthesizing alumina from aluminum saline slags are reviewed in a context of growing demand for this metal and environmental crisis. The first sections present the aluminum production processes, both from natural bauxite (primary process) and from the recycling of materials with a high aluminum content (secondary process); paying attention to the waste generated and what environmental problems they produce. The main investigations that have allowed to address the recovery of the waste generated are described below, focusing on the processes of recovery/extraction of the aluminum present in its composition. The aluminum in these residues can be found as a metal or forming other compounds such as simple or mixed oxides. Chemical processes are the most relevant, especially those that deal with the acid and alkaline extraction of the metal. The most important section of the work reports on the methods of synthesis of Al2O3, highlighting the methods of precipitation, sol-gel, hydrothermal synthesis, and combustion, among others. The work ends with a summary and conclusions section.
  • PublicationOpen Access
    Hydrocalumite-TiO2 hybrid systems synthesized from aluminum salt cake for photodegradation of ibuprofen
    (Elsevier, 2024) Rebollo, Beatriz; Jiménez, Alejandro; Trujillano, Raquel; Rives, Vicente; Gil Bravo, Antonio; Vicente, Miguel Ángel; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2
    Synthesis of hydrocalumite–TiO2 hybrid systems and their use in photodegradation of ibuprofen is reported for the first time. Hydrocalumite was prepared with Al3+ recovered from an aluminum slag (circular economy), TiO2 was deposited on hydrocalumite by hydrolysis of titanium(IV) isopropoxide, and the solids thus obtained were calcined at 400 and 750 ºC. The solid calcined at 400 ºC was essentially amorphous, showing the presence of calcite due to the fixation of atmospheric CO2, while the solid calcined at 750 ºC was composed of mayenite, perovskite and rutile. The calcined solids were used for catalytic degradation of ibuprofen (50 ppm in aqueous solutions) under UV irradiation, obtaining better results than when using commercial TiO2–P25 from Degussa. Under the specific conditions used, the degradation took place in the initial steps of the process, mainly giving rise to species with higher molecular mass than initial ibuprofen.
  • PublicationOpen Access
    Optimizing the removal of nitrate by adsorption onto activated carbon using response surface methodology based on the central composite design
    (Taylor & Francis, 2020) Taoufik, Nawal; Elmchaouri, Abdellah; Korili, Sophia A.; Gil Bravo, Antonio; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Ciencias
    This study sheds light on the adsorption process for the removal of nitrate ions from synthetic aqueous solutions. This contaminant pose a potential risk to the environment and can cause health effects including cancers and methemoglobinemia in infants. When the adsorption process is carried out, the effect by the several operating parameters such as initial nitrate concentration, pH, mass of activated carbon, and contact time becomes apparent. The essential process variables are optimized using response surface methodology (RSM) based on the central composite design (CCD) experiments. For this purpose 31 experimental results are required to determine the optimum conditions. The optimum conditions for the removal of nitrates is found to be: initial nitrate concentration = 15 mg/L; initial pH 4.0; mass of activated carbon = 25 mg, and contact time = 70 min. At these optimized conditions, the maximum removal of nitrates is found to be 96.59%.
  • PublicationOpen Access
    Photocatalytic degradation of trimethoprim on doped Ti-pillared montmorillonite
    (Elsevier, 2019) González, Beatriz; Trujillano, Raquel; Vicente, Miguel Ángel; Rives, Vicente; Korili, Sophia A.; Gil Bravo, Antonio; Institute for Advanced Materials and Mathematics - INAMAT2
    Montmorillonite pillared with titanium and doped with Cr3+ or Fe3+ has been tested for the photo-degradation of the antibiotic trimethoprim (trimethoxybenzyl-2,4-pyrimidinediamine) under different conditions, namely, in the dark or in UV light, with or without catalyst, finding excellent catalytic performance under photocatalytic conditions. The degradation by-products were preliminary analysed by mass spectrometry. The results suggested that the molecule broke in two halves, corresponding to its two existing rings. The process continued with the breakage of new fragments from the trimethoxybenzene half, these fragments later reacted with the methoxy groups in this part of the molecule, giving species with m/z values higher than that for the starting molecule, and with the breakage of new fragments.
  • PublicationOpen Access
    Improved photocatalytic and antibacterial performance of Cr doped TiO2 nanoparticles
    (Elsevier, 2021) Gómez Polo, Cristina; Larumbe Abuin, Silvia; Gil Bravo, Antonio; Muñoz Labiano, Delia; Rodríguez Fernández, L.; Fernández Barquín, Luis; García-Prieto, Ana; Fernández-Gubieda, María Luisa; Muela, Alicia; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Ciencias
    The effect of Cr and N doping in the adsorption capacity, photocatalytic properties and antibacterial response of TiO2 anatase nanoparticles is analyzed. The nanoparticles (N-TiO2, Cr-TiO2 and Cr/N-TiO2) were prepared by the sol-gel method. The structural (X-ray diffraction and TEM) and magnetic (SQUID magnetometry) characterization confirms the nanosized nature of the anatase nanoparticles and the absence of secondary phases. The enhancement of the adsorption capacity of the dye (methyl orange) on the surface of the catalysts for the Cr and Cr/N doped samples, together with the redshift of the UV-Vis absorbance spectra promote a high photocatalytic performance under visible light in these nanocatalysts. The culturability and viability of the Escherichia coli DH5α in a medium supplemented with the nanoparticles was characterized and compared with the evolution under visible light (both without and with nanoparticles). The results show that Cr-TiO2 nanoparticles under visible light display antibacterial activity that cannot be accounted by the toxicity of the nanoparticles alone. However the antibacterial effect is not observed in N-TiO2 and Cr/N-TiO2. The differences in the electrostatic charge (isoelectric point) and the degree of nanoparticle dispersion are invoked as the main origins of the different antibacterial response in the Cr-TiO2 nanoparticles.
  • PublicationOpen Access
    Evidence for the synthesis of La-hexaaluminate from aluminum-containing saline slag wastes: correction of structural defects and phase purification at low temperature
    (Elsevier, 2021) Torrez Herrera, Jonathan Josué; Fuentes Ordóñez, Edwin Gustavo; Korili, Sophia A.; Gil Bravo, Antonio; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Ciencias; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    The synthesis of a lanthanum hexaaluminate from the aluminum extracted from a saline slag waste is presented for the first time. Briefly, a refluxing 2 M solution of HCl is used to extract the aluminum, giving 8.9 gAl/dm3 along with other metals in lower concentrations. This solution is used to synthesize the hexaaluminate by mixing with a stoichiometric amount of lanthanum nitrate. The results showed the formation of pure phase hexaaluminate at 1473 K, as well as predominance of the hexaaluminate phase at temperatures of 1273 and 1373 K. These results also indicate that the pure hexaaluminate phase can be obtained at a much lower temperature than when commercial aluminum solutions are used improving the applications as catalyst and thermal barrier material. It was also found that the presence of other metals in solution allows the structural problems and purity of the La-hexaaluminate phase to be corrected when working with stoichiometric ratios.
  • PublicationOpen Access
    Adsorption recovery of Ag(I) and Au(III) from an electronics industry wastewater on a clay mineral composite
    (University of Science and Technology Beijing, 2019) Rakhila, Youness; Elmchaouri, Abdellah; Mestari, Allal; Korili, Sophia A.; Abouri, Meriem; Gil Bravo, Antonio; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Ciencias
    The aim of this work is to investigate the ability of an adsorbent of a clay mineral composite to remove and recover gold and silver ions from wastewater. The composite was prepared by mixing phosphogypsum (PG), obtained from an industrial waste, and a natural clay mineral. The materials were characterized before and after use in adsorption by several techniques. Batch adsorption experiments were carried out, and the effects of the contact time and the pH and temperature of solution on the removal processes were investigated. The optimum pH for the adsorption was found to be 4. The adsorption of these metal ions reached equilibrium after 2 h of contact. The pseudo-first- and the pseudo-second-order kinetic models, as well as the Freundlich and the Langmuir isotherm equations, were considered to describe the adsorption results. The maximum adsorbed amount of 85 mg·g−1 Ag(I) and 108.3 mg·g−1 Au(III) was found. The recovery of the adsorbed gold and silver ions from the adsorbent was also analyzed. Strong acids appeared to be the best desorption agents to recover gold and silver ions. The use of aqua regia gave regeneration rates close to 95.3% and 94.3% for Ag(I) and Au(III), respectively. Finally, the removal of gold and silver ions from an industrial wastewater was tested in batch experiments, and percentage recoveries of 76.5% and 79.9% for Ag(I) and Au(III), respectively, were obtained. To carry out the industrial application of the proposed methodology, an economic viability study is required.
  • PublicationOpen Access
    Catalytic valorization of CO2 by hydrogenation: current status and future trends
    (Taylor and Francis, 2021) Sancho Sanz, Iris; Korili, Sophia A.; Gil Bravo, Antonio; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Ciencias
    Terrestrial environmental and biological systems are being threatened by the tremendous amount of human carbon dioxide emissions. Therefore, it is crucial to develop a sustainable energy system based on CO2 as chemical feedstock. In this review, an introduction to the CO2 activation and transformation has been made, together with a more comprehensive study of the catalytical reduction of CO2 to methane, methanol, and formic acid, which are currently contemplated as chemical feedstocks and/or promising energy carriers and alternative fuels.
  • PublicationOpen Access
    Microwave-assisted pillaring of a montmorillonite with al-polycations in concentrated media
    (MDPI, 2017) González, Beatriz; Pérez, Alba Helena; Trujillano, Raquel; Gil Bravo, Antonio; Vicente, Miguel Ángel; Química Aplicada; Kimika Aplikatua
    A montmorillonite has been intercalated with Al3+ polycations, using concentrated solutions and clay mineral dispersions. The reaction has been assisted by microwave radiation, yielding new intercalated solids and leading to Al-pillared solids after their calcination at 500 °C. The solids were characterized by elemental chemical analysis, X-ray diffraction, FTIR spectroscopy, thermal analyses, and nitrogen adsorption. The evolution of the properties of the materials was discussed as a function of the preparation conditions. Microwave treatment for 2.5 min provided correctly pillared solids.