Person:
Arnedo Gil, Israel

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Arnedo Gil

First Name

Israel

person.page.departamento

ORCID

0000-0002-1627-4677

person.page.upna

7673

Name

Search Results

Now showing 1 - 10 of 25
  • PublicationOpen Access
    Advanced graphene-based transparent conductive electrodes for photovoltaic applications
    (MDPI, 2019) Fernández, Susana; Boscá, Alberto; Pedrós, Jorge; Inés Ortigosa, Andrea; Fernández Vallejo, Montserrat; Arnedo Gil, Israel; González, José Pablo; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    New architectures of transparent conductive electrodes (TCEs) incorporating graphene monolayers in different configurations have been explored with the aim to improve the performance of silicon-heterojunction (SHJ) cell front transparent contacts. In SHJ technology, front electrodes play an important additional role as anti-reflectance (AR) coatings. In this work, different transparent-conductive-oxide (TCO) thin films have been combined with graphene monolayers in different configurations, yielding advanced transparent electrodes specifically designed to minimize surface reflection over a wide range of wavelengths and angles of incidence and to improve electrical performance. A preliminary analysis reveals a strong dependence of the optoelectronic properties of the TCEs on (i) the order in which the different thin films are deposited or the graphene is transferred and (ii) the specific TCO material used. The results shows a clear electrical improvement when three graphene monolayers are placed on top on 80-nm-thick ITO thin film. This optimum TCE presents sheet resistances as low as 55 Ω/sq and an average conductance as high as 13.12 mS. In addition, the spectral reflectance of this TCE also shows an important reduction in its weighted reflectance value of 2-3%. Hence, the work undergone so far clearly suggests the possibility to noticeably improve transparent electrodes with this approach and therefore to further enhance silicon-heterojunction cell performance. These results achieved so far clearly open the possibility to noticeably improve TCEs and therefore to further enhance SHJ contact-technology performance.
  • PublicationOpen Access
    Impact of graphene monolayer on the performance of non-conventional silicon heterojunction solar cells with moox hole-selective contact
    (MDPI, 2023) Ros, Eloi; Fernández, Susana; Ortega, Pablo; Taboada, Elena; Arnedo Gil, Israel; Gandía, José Javier; Voz, Cristóbal; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    In this work, a new design of transparent conductive electrode based on a graphene monolayer is evaluated. This hybrid electrode is incorporated into non-standard, high-efficiency crystalline silicon solar cells, where the conventional emitter is replaced by a MoOx selective contact. The device characterization reveals a clear electrical improvement when the graphene monolayer is placed as part of the electrode. The current–voltage characteristic of the solar cell with graphene shows an improved FF and Voc provided by the front electrode modification. Improved conductance values up to 5.5 mS are achieved for the graphene-based electrode, in comparison with 3 mS for bare ITO. In addition, the device efficiency improves by around 1.6% when graphene is incorporated on top. These results so far open the possibility of noticeably improving the contact technology of non-conventional photovoltaic technologies and further enhancing their performance.
  • PublicationOpen Access
    Multipactor breakdown analysis of Ku-band meandered low-pass filter
    (2022) Sami, Abdul; Teberio Berdún, Fernando; Arnedo Gil, Israel; Martín Iglesias, Petronilo; Lopetegui Beregaña, José María; Gómez Laso, Miguel Ángel; Arregui Padilla, Iván; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    In this work, a very compact rectangular waveguide low-pass filter with meandered topology based on commensurate lines for Ku-band satellite applications is analysed for high-power handling capabilities. The device consists of rectangular waveguide sections properly cascaded to form a meandered topology to obtain the desired value of the local reflection coefficients. which are essential to achieve the target frequency response and also to keep large mechanical gaps. Hence, this technique allows us not only to design a filter with compact size but a filter geometry which is suitable for high power applications. In the paper, the low-pass filter based on commensurate lines is first designed by cascading E-plane mitered bends (±90° EMBs) in CST Microwave Studio (MWS) and then the values of the electromagnetic fields at the passband frequencies are exported to Spark3D to perform a multipactor analysis. The critical areas inside the device where the multipactor discharge occurs will also be identified in the high-power analysis. https://doi.org/10.5281/zenodo.7343236
  • PublicationOpen Access
    Integrating multiple stubs in stepped-impedance filter aiming for high selectivity
    (IET, 2022) Sami, Abdul; Gómez Laso, Miguel Ángel; Lopetegui Beregaña, José María; Arnedo Gil, Israel; Calero Fernández, Ibai; Teberio Berdún, Fernando; Martín Iglesias, Petronilo; Benito Pertusa, David; Arregui Padilla, Iván; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    A design technique to include multiple and fully-controlled transmission zeros (TZs) in the frequency response of rectangular waveguide commensurate-line stepped-impedance filters is presented in this letter. These bandpass filters (BPFs) are known for having reduced sensitivities against manufacturing inaccuracies and are composed of multiple waveguide sections. In order to improve their selectivity, 3λg/4 and λg/4-stubs are included to create multiple TZs around the passband. The proposed technique allows us to add multiple stubs in a single section and, therefore, only minor adjustments in the affected part of the filter are required, which simplifies the overall design process. The technique has been verified with a design example with four TZs (two on each side) near the passband.
  • PublicationOpen Access
    Synthesis of one dimensional electromagnetic bandgap structures with fully controlled parameters
    (IEEE, 2017) Arnedo Gil, Israel; Chudzik, Magdalena; Percaz Ciriza, Jon Mikel; Arregui Padilla, Iván; Teberio Berdún, Fernando; Benito Pertusa, David; Lopetegui Beregaña, José María; Gómez Laso, Miguel Ángel; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    In this paper, we propose a novel synthesis strategy for the design of one dimensional electromagnetic bandgap (1- D-EBG) structures where all the performance parameters of these devices can fully be controlled, i.e., the central frequency of the forbidden band, its attenuation level and bandwidth, and the ripple level at the passbands. The novel synthesis strategy employs a new inverse-scattering technique to accurately synthesize the 1-D-EBG structure, targeting a properly interpolated version of a classical periodic filter fulfilling the required frequency specifications. The new inverse-scattering technique follows a continuous layer peeling approach and relies on the coupled-mode theory to precisely model the microwave structures. Telecommunication and radar systems, as well as material characterization devices, will be profited by this proposal with which enhanced filters, sensors, power dividers, couplers, mixers, oscillators, and amplifiers can be designed in many different technologies. As a proof of concept, a 1-D-EBG structure in microstrip technology with a single forbidden band (free of spurious stopband replicas), with attenuation level of 30 dB, fractional bandwidth larger than 100%, and return loss level at the passbands of 20 dB, has been designed and fabricated. The measurements obtained are in very good agreement with the simulations and target specifications, being free of spurious replicas up to the 15th harmonic, showing the robustness and very good performance of the novel design strategy proposed.
  • PublicationOpen Access
    Producing and exploiting simultaneously the forward and backward coupling in EBG-assisted microstrip coupled lines
    (IEEE, 2016) Percaz Ciriza, Jon Mikel; Chudzik, Magdalena; Arnedo Gil, Israel; Arregui Padilla, Iván; Teberio Berdún, Fernando; Gómez Laso, Miguel Ángel; Lopetegui Beregaña, José María; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    In this paper, a methodology is proposed for the design of EBG-assisted coupled line structures in microstrip technology, controlling independently the forward and backward coupling. It is based on the use of a single-frequency-tuned electromagnetic bandgap (EBG) structure to produce a single backward-coupled frequency band, in combination with the forward-coupled frequency bands produced by the difference between the even and odd mode propagation constants present in microstrip technology. Thus, the central frequency of the backward-coupled band is controlled by the period of the EBG structure, while the frequencies of the forward coupled bands are fixed by the length of the device. The rest of the frequencies go to the direct port giving rise to a device with the input port matched at all the frequencies and where the coupled bands are easily controllable by adjusting the corresponding design parameter. The novel methodology proposed has been successfully demonstrated by designing a triplexer intended for the GSM (900 MHz) and WLAN (2.4 GHz and 5.5 GHz) telecommunication bands.
  • PublicationOpen Access
    Mapping smooth profile H-plane rectangular waveguide structures to substrate integrated waveguide technology
    (Institution of Engineering and Technology, 2014) Díaz Caballero, E.; Urrea Micó, Verónica; Chudzik, Magdalena; Arregui Padilla, Iván; Arnedo Gil, Israel; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    The guidelines for mapping rectangular waveguide structures to substrate integrated waveguide (SIW) technology are well understood for structures with straight walls. However, the mapping of a smooth profile structure from rectangular waveguide to SIW technology is not trivial and it needs to be carefully studied. A general procedure for mapping any smooth profile H -plane rectangular waveguide structure to SIW technology is proposed. A practical example is also provided and experimentally validated.
  • PublicationOpen Access
    Optimized pattern design of a light guide using 2D ray-tracing simulation
    (SPIE, 2023) Medrano Gurrea, Mario; Jiménez Martínez, Unai; Tainta Ausejo, Santiago; Erro Betrán, María José; Arnedo Gil, Israel; Beato López, Juan Jesús; Izura, J.; Zabala, S.; Institute of Smart Cities - ISC
    We propose the use of a simplified model for the analysis of the scattering elements used in edge-lit systems. By modelling their behaviour as lambertian light sources whose properties depend on the size and geometry of the scatterer and LGP, it is possible to simulate the illuminance map of the edge-lit structure using only 2D ray-traced simulation. This reduces the computational complexity in the optimisation process used to calculate the scatterers distribution to achieve maximum uniformity in light extraction. The results obtained by comparison between the proposed algorithm and a commercial software demonstrate the validity of the proposal.
  • PublicationOpen Access
    Design procedure for new compact waffle-iron ilters with transmission zeros
    (IEEE, 2018) Teberio Berdún, Fernando; Percaz Ciriza, Jon Mikel; Arregui Padilla, Iván; Martín Iglesias, Petronilo; Lopetegui Beregaña, José María; Gómez Laso, Miguel Ángel; Arnedo Gil, Israel; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    In this paper, a novel waffle-iron filter with transmission zeros at multiple frequencies, along with its design procedure, is presented. The proposed filter features a high-power behavior and a wide rejected band in a single compact structure by means of a set of transmission zeros that can also be placed close to the passband. Its design method rests on a divide-and-rule strategy, where the physical dimensions of the constituent design entities (DEs) can be easily computed in a very short time. A novel high-power compact waffle-iron filter with transmission zeros at multiple frequencies has been designed as well as several classical waffle-iron filters with transmission zeros at one frequency only, using a detailed step-by-step procedure which avoids the bruteforce optimizations needed until now. Multipactor and corona simulations have been conducted proving a high-power handling capability of 1.8 kW and 78.6 W, respectively. A prototype of the novel filter has been fabricated, obtaining a remarkable accordance between the simulated and measured results.
  • PublicationOpen Access
    High-power filter design in waveguide technology: future generation of waveguide satellite filters in payloads handling increasing bit rates and numbers of channels
    (IEEE, 2020) Arregui Padilla, Iván; Teberio Berdún, Fernando; Arnedo Gil, Israel; Percaz Ciriza, Jon Mikel; Martín Iglesias, Petronilo; Lopetegui Beregaña, José María; Gómez Laso, Miguel Ángel; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    To design a filter for a particular application, many issues must first be considered. Which technology will be the most convenient? What design technique will provide better results for a particular set of frequency specifications? Once the device has been designed, will it fulfill all of the (not only electrical) requirements? It is not always easy to answer such questions in advance. In this article, we try to shed some light on these questions when our aim is the design of filters for high-power operation.