Catalán Ros, Leyre

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Catalán Ros

First Name

Leyre

person.page.departamento

Ingeniería

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 12
  • PublicationOpen Access
    Geothermal thermoelectric generator for Timanfaya National Park
    (2019) Catalán Ros, Leyre; Astrain Ulibarrena, David; Aranguren Garacochea, Patricia; Araiz Vega, Miguel; Ingeniaritza; Institute of Smart Cities - ISC; Ingeniería
    Despite being one of the largest renewable sources, geothermal energy is not widely utilized for electricity generation. In the case of shallow Hot Dry Rock (HDR) fields, thermoelectric generators can entail a sustainable alternative to Enhanced Geothermal Systems (EGS). The present work studies two configurations of thermoelectric generators for Timanfaya National Park (Spain), one of the most important Hot Dry Rock fields in the world, with temperatures of 500°C at only 3 meters deep. The first configuration includes biphasic thermosyphons as heat exchangers for both sides, leading to a completely passive thermoelectric generator. The second configuration uses fin dissipators as cold-side heat exchangers.
  • PublicationOpen Access
    Simulation of thermoelectric heat pumps in nearly zero energy buildings: why do all models seem to be right?
    (Elsevier, 2021) Martínez Echeverri, Álvaro; Díaz de Garayo, Sergio; Aranguren Garacochea, Patricia; Araiz Vega, Miguel; Catalán Ros, Leyre; Ingeniería; Ingeniaritza; Institute of Smart Cities - ISC
    The use of thermoelectric heat pumps for heat, ventilation, and air conditioning in nearly-zero-energy buildings is one of the most promising applications of thermoelectrics. However, simulation works in the literature are predominately based on the simple model, which was proven to exhibit significant deviations from experimental results. Nine modelling techniques have been compared in this work, according to statistical methods based on uncertainty analysis, in terms of predicted coefficient of performance and cooling power. These techniques come from the combination of three simulation models for thermoelectric modules (simple model, improved model, electric analogy) and five methods for implementing the thermoelectric properties. The main conclusion is that there is no statistical difference in the mean values of coefficient of performance and cooling power provided by these modelling techniques under all the scenarios, at 95% level of confidence. However, differences appear in the precision of these results in terms of uncertainty of the confidence intervals. Minimum values of uncertainty are obtained when the thermal resistance ratio approaches 0.1, being ±8% when using temperature-dependent expressions for the thermoelectric properties, ±18% when using Lineykin's method, and ± 25% when using Chen's method. The best combination is that composed of the simple model and temperature-dependent expressions for the thermoelectric properties. Additionally, if low values of resistance ratio are anticipated, empirical expressions from the literature can be used for the thermal resistance of the heat exchangers; for high values, though, experimental tests should be deployed, especially for the heat exchanger on the hot side.
  • PublicationOpen Access
    Improvements in the cooling capacity and the COP of a transcritical CO 2 refrigeration plant operating with a thermoelectric subcooling system
    (Elsevier, 2019) Astrain Ulibarrena, David; Merino Vicente, Amaya; Catalán Ros, Leyre; Aranguren Garacochea, Patricia; Araiz Vega, Miguel; Sánchez, Daniel; Cabello, Ramón; Llopis, R.; Ingeniaritza; Institute of Smart Cities - ISC; Ingeniería
    Restrictive environmental regulations are driving the use of CO 2 as working fluid in commercial vapour compression plants due to its ultra-low global warming potential (GWP 100 = 1) and its natural condition. However, at high ambient temperatures transcritical operating conditions are commonly achieved causing low energy efficiencies in refrigeration facilities. To solve this issue, several improvements have been implemented, especially in large centralized plants where ejectors, parallel compressors or subcooler systems, among others, are frequently used. Despite their good results, these measures are not suitable for small-capacity systems due mainly to the cost and the complexity of the system. Accordingly, this work presents a new subcooling system equipped with thermoelectric modules (TESC), which thanks to its simplicity, low cost and easy control, results very suitable for medium and small capacity plants. The developed methodology finds the gas-cooler pressure and the electric voltage supplied to the TESC system that maximizes the overall COP of the plant taking into account the ambient temperature, the number of thermoelectric modules used and the thermal resistance of the heat exchangers included in the TESC. The obtained results reveal that, with 20 thermoelectric modules, an improvement of 20% in terms of COP and of 25.6% regarding the cooling capacity can be obtained compared to the base cycle of CO 2 of a small cooling plant refrigerated by air. Compared to a cycle that uses an internal heat exchanger IHX, the improvements reach 12.2% and 19.5% respectively.
  • PublicationOpen Access
    Women, Science and Technology Chair—Promoting women’s careers in stem fields
    (IEEE, 2023) Pérez Artieda, Miren Gurutze; Gómez Fernández, Marisol; Aranguren Garacochea, Patricia; Barrenechea Tartas, Edurne; Catalán Ros, Leyre; Díaz Lucas, Silvia; Jurío Munárriz, Aránzazu; Martínez Ramírez, Alicia; Millor Muruzábal, Nora; Ortiz Nicolás, Amalia; San Martín Biurrun, Idoia; Estadística, Informática y Matemáticas; Ingeniería; Ingeniería Eléctrica, Electrónica y de Comunicación; Estatistika, Informatika eta Matematika; Ingeniaritza; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    The Chair of Women, Science and Technology of the Universidad Pública de Navarra (UPNA) aims to increase the participation of women in the fields of science and technology. Scientific culture and dissemination are the main focus of the different actions of the Chair. These activities include: the theatrical performance "Yo quiero ser científica", experimental workshops and conferences and exhibitions for all audiences and ages. More than 6.000 people have seen the play, more than 1.500 secondary school students have participated in the workshops and the audiovisual material has received more than 20.000 visits.
  • PublicationOpen Access
    Experimental evidence of the viability of thermoelectric generators to power volcanic monitoring stations
    (MDPI, 2020) Catalán Ros, Leyre; Garacochea Sáenz, Amaia; Casi Satrústegui, Álvaro; Araiz Vega, Miguel; Aranguren Garacochea, Patricia; Astrain Ulibarrena, David; Ingeniaritza; Institute of Smart Cities - ISC; Ingeniería
    Although there is an important lack of commercial thermoelectric applications mainly due to their low efficiency, there exist some cases in which thermoelectric generators are the best option thanks to their well-known advantages, such as reliability, lack of maintenance and scalability. In this sense, the present paper develops a novel thermoelectric application in order to supply power to volcanic monitoring stations, making them completely autonomous. These stations become indispensable in any volcano since they are able to predict eruptions. Nevertheless, they present energy supply difficulties due to the absence of power grid, the remote access, and the climatology. As a solution, this work has designed a new integral system composed of thermoelectric generators with high efficiency heat exchangers, and its associated electronics, developed thanks to Internet of Things (IoT) technologies. Thus, the heat emitted from volcanic fumaroles is transformed directly into electricity with thermoelectric generators with passive heat exchangers based on phase change, leading to a continuous generation without moving parts that powers different sensors, the information of which is emitted via LoRa. The viability of the solution has been demonstrated both at the laboratory and at a real volcano, Teide (Canary Islands, Spain), where a compact prototype has been installed in an 82 C fumarole. The results obtained during more than eight months of operation prove the robustness and durability of the developed generator, which has been in operation without maintenance and under several kinds of meteorological conditions, leading to an average generation of 0.49W and a continuous emission over more than 14 km.
  • PublicationOpen Access
    Cátedra Mujer, Ciencia y Tecnología de la UPNA
    (Gobierno de Navarra, 2023) Aranguren Garacochea, Patricia; Barrenechea Tartas, Edurne; Catalán Ros, Leyre; Díaz Lucas, Silvia; Jurío Munárriz, Aránzazu; Martínez Ramírez, Alicia; Millor Muruzábal, Nora; Gómez Fernández, Marisol; San Martín Biurrun, Idoia; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Ingeniería; Ingeniaritza; Institute of Smart Cities - ISC; Institute for Advanced Materials and Mathematics - INAMAT2
    La Cátedra Mujer, Ciencia y Tecnología de la Universidad Pública de Navarra (UPNA) tiene como objetivo aumentar la participación de las mujeres en campos de ciencia y tecnología. La cultura y la divulgación científicas son el eje principal de la actividad de la Cátedra. Dicha actividad engloba: la representación teatral Yo quiero ser científica, talleres experimentales y conferencias y exposiciones para todos los públicos y edades. Más de 6000 personas han visto la obra de teatro, más de 1500 estudiantes de ESO han participado en los talleres y el material audiovisual ha recibido más de 20000 visitas.
  • PublicationOpen Access
    Computational study of geothermal thermoelectric generators with phase change heat exchangers
    (Elsevier, 2020) Catalán Ros, Leyre; Araiz Vega, Miguel; Aranguren Garacochea, Patricia; Astrain Ulibarrena, David; Ingeniaritza; Institute of Smart Cities - ISC; Ingeniería
    The use of thermoelectric generators with phase change heat exchangers has demonstrated to be an interesting and environmentally friendly alternative to enhanced geothermal systems (EGS) in shallow hot dry rock fields (HDR), since rock fracture is avoided. The present paper studies the possibilities of the former proposal in a real location: Timanfaya National Park (Canary Islands, Spain), one of the greatest shallow HDR fields in the world, with 5000 m2 of characterized geothermal anomalies presenting temperatures up to 500 °C at only 2 m deep. For this purpose, a computational model based on the thermal-electrical analogy has been developed and validated thanks to a real prototype, leading to a relative error of less than 8%. Based on this model, two prototypes have been designed and studied for two different areas within the park, varying the size of the heat exchangers and the number of thermoelectric modules installed. As a result, the potential of the solution is demonstrated, leading to an annual electricity generation of 681.53 MWh thanks to the scalability of thermoelectric generators. This generation is obtained without moving parts nor auxiliary consumption, thus increasing the robustness of the device and removing maintenance requirements.
  • PublicationOpen Access
    Gamification and a low-cost laboratory equipment aimed to boost vapor compresion refrigeration learning
    (OmniaScience, 2022) Aranguren Garacochea, Patricia; Sánchez García-Vacas, Daniel; Casi Satrústegui, Álvaro; Araiz Vega, Miguel; Catalán Ros, Leyre; Ingeniaritza; Institute of Smart Cities - ISC; Ingeniería; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    The nowadays European educational framework boosts applying the learned theoretical concepts to real situations. Hence, practice sessions are key resources to present students direct applications of the theoretical concepts shown in class. Thus, developing new educational equipment and practice sessions oriented to bringing theoretical knowledge closer to practice should be one of the objectives of teachers. The present work describes a solution proposed by lectures of two Spanish universities looking to increase the knowledge of their engineering students. Along the years, these docents have noticed the lack of connection between the theoretical and practical knowledge among their students, drastically harming their learning procedure. Thus, in order to deepen into practical learning, a teaching methodology involving low-cost prototypes of vapor compression systems and a gamification method to help the students understand the concepts is proposed. The proposed methodology is expected to make a big positive impact on the results obtained by the students, taking into account the preliminary results reached.
  • PublicationOpen Access
    Thermoelectric generator with passive biphasic thermosyphon heat exchanger for waste heat recovery: design and experimentation
    (MDPI, 2021) Araiz Vega, Miguel; Casi Satrústegui, Álvaro; Catalán Ros, Leyre; Aranguren Garacochea, Patricia; Astrain Ulibarrena, David; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Gobierno de Navarra / Nafarroako Gobernua
    One of the measures to fight against the current energy situation and reduce the energy consumption at an industrial process is to recover waste heat and transform it into electric power. Thermoelectric generators can be used for that purpose but there is a lack of experimental studies that can bring this technology closer to reality. This work presents the design, optimizations and development of two devices that are experimented and compared under the same working conditions. The hot side heat exchanger of both generators has been designed using a computational fluid dynamics software and for the cold side of the generators two technologies have been analysed: a finned dissipater that uses a fan and free convection biphasic thermosyphon. The results obtained show a maximum net generation of 6.9 W in the thermoelectric generator with the finned dissipater; and 10.6 W of power output in the generator with the biphasic thermosyphon. These results remark the importance of a proper design of the heat exchangers, trying to get low thermal resistances at both sides of the thermoelectric modules, as well as, the necessity of considering the auxiliary consumption of the equipment employed.
  • PublicationOpen Access
    Initiative to increment the number of women in STEM degrees: women, science and technology chair of the Public University of Navarre
    (IEEE, 2020) Aranguren Garacochea, Patricia; San Martín Biurrun, Idoia; Catalán Ros, Leyre; Martínez Ramírez, Alicia; Jurío Munárriz, Aránzazu; Díaz Lucas, Silvia; Pérez Artieda, Miren Gurutze; Gómez Fernández, Marisol; Barrenechea Tartas, Edurne; Estadística, Informática y Matemáticas; Ingeniería; Ingeniería Eléctrica, Electrónica y de Comunicación; Estatistika, Informatika eta Matematika; Ingeniaritza; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Gobierno de Navarra / Nafarroako Gobernua; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    The Public University of Navarre joined with Navarre Government has created the Women, Science and Technology Chair. This chair arises due to the plummeting tendency of the percentage of women in STEM degrees with the aim of reversing this trend. The programme of activities is defined throughout this contribution by six activities: a Theatre Play, a Poster Award on Final Degree/Masters Project, The 1st Week of Women, Science and Technology, the Promotion of Technical Degrees in schools and high-schools, a Workshop about Gender Stereotypes and the Fostering of Women among Science and Environment. Each activity gained great success and the preset goals were highly accomplished, especially, the 1st Week of Women, Science and Technology activity. The latter achieved a great success both in participation and in repercussion, contributing to visualize the role of women in science and technology.