Catalán Ros, Leyre
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Catalán Ros
First Name
Leyre
person.page.departamento
Ingeniería
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
2 results
Search Results
Now showing 1 - 2 of 2
Publication Open Access The promising combination of thermoelectric generators with IoT technologies for autonomous monitoring systems(2019) Garacochea Sáenz, Amaia; Catalán Ros, Leyre; Casi Satrústegui, Álvaro; Gubía Villabona, Eugenio; Astrain Ulibarrena, David; Ingeniaritza; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería; Ingeniería Eléctrica, Electrónica y de ComunicaciónMonitoring stations becomes essential in any volcanic system in the world but, because of their remote location, both the electricity supply and the communications represent a technological challenge. The present work studies the feasibility of an autonomous volcanic monitoring system powered by thermoelectric generators for one of the monitoring stations of the Teide National Park (Canary Island), where temperatures of 80°C at few centimeters from the surface are found. The stable generation and robustness of thermoelectricity in combination with a new communication system based on LoRa (a low power wireless technology) make this solution a good alternative.Publication Open Access Study of the degradation of heat exchanger materials in the acidic environment of Teide National Park(2019) Catalán Ros, Leyre; Pérez Artieda, Miren Gurutze; Berlanga Labari, Carlos; Garacochea Sáenz, Amaia; Rodríguez García, Antonio; Domínguez, Vidal; Montañez, Ana Carolina; Padilla, Germán D.; Pérez, Nemesio M.; Ingeniaritza; Institute for Advanced Materials and Mathematics - INAMAT2; Institute of Smart Cities - ISC; IngenieríaSupplying power to volcanic monitoring stations constitutes a challenge due to both the access difficulties and the acidic environment associated with volcanoes. ELECTROVOLCAN project is developing thermoelectric generators that make use of the temperature of the available fumaroles to directly supply electricity to the stations in a robust, compact and reliable way. The main element of thermoelectric generators are the thermoelectric modules, based on Seebeck effect. Nonetheless, since the efficiency of these modules increases with the temperature difference between their sides, the introduction of heat exchangers becomes essential. The present study analyses the behavior of different materials used in the construction of the heat exchangers in the acidic environment of Teide National Park.