Villanueva Larre, Arantxa

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Villanueva Larre

First Name

Arantxa

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 15
  • PublicationOpen Access
    Fast and robust ellipse detection algorithm for head-mounted eye tracking systems
    (Springer, 2018) Martinikorena Aranburu, Ion; Cabeza Laguna, Rafael; Villanueva Larre, Arantxa; Urtasun, Iñaki; Larumbe Bergera, Andoni; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    In head-mounted eye tracking systems, the correct detection of pupil position is a key factor in estimating gaze direction. However, this is a challenging issue when the videos are recorded in real-world conditions, due to the many sources of noise and artifacts that exist in these scenarios, such as rapid changes in illumination, reflections, occlusions and an elliptical appearance of the pupil. Thus, it is an indispensable prerequisite that a pupil detection algorithm is robust in these challenging conditions. In this work, we present one pupil center detection method based on searching the maximum contribution point to the radial symmetry of the image. Additionally, two different center refinement steps were incorporated with the aim of adapting the algorithm to images with highly elliptical pupil appearances. The performance of the proposed algorithm is evaluated using a dataset consisting of 225,569 head-mounted annotated eye images from publicly available sources. The results are compared with the better algorithm found in the bibliography, with our algorithm being shown as superior.
  • PublicationOpen Access
    Supervised descent method (SDM) applied to accurate pupil detection in off-the-shelf eye tracking systems
    (ACM, 2018) Larumbe Bergera, Andoni; Cabeza Laguna, Rafael; Villanueva Larre, Arantxa; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    The precise detection of pupil/iris center is key to estimate gaze accurately. This fact becomes specially challenging in low cost frameworks in which the algorithms employed for high performance systems fail. In the last years an outstanding effort has been made in order to apply training-based methods to low resolution images. In this paper, Supervised Descent Method (SDM) is applied to GI4E database. The 2D landmarks employed for training are the corners of the eyes and the pupil centers. In order to validate the algorithm proposed, a cross validation procedure is performed. The strategy employed for the training allows us to affirm that our method can potentially outperform the state of the art algorithms applied to the same dataset in terms of 2D accuracy. The promising results encourage to carry on in the study of training-based methods for eye tracking.
  • PublicationOpen Access
    Introducing I2Head database
    (ACM (Association for Computing Machinery), 2018) Martinikorena Aranburu, Ion; Cabeza Laguna, Rafael; Villanueva Larre, Arantxa; Porta Cuéllar, Sonia; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    I2Head database has been created with the aim to become an optimal reference for low cost gaze estimation. It exhibits the following outstanding characteristics: it takes into account key aspects of low resolution eye tracking technology; it combines images of users gazing at different grids of points from alternative positions with registers of user's head position and it provides calibration information of the camera and a simple 3D head model for each user. Hardware used to build the database includes a 6D magnetic sensor and a webcam. A careful calibration method between the sensor and the camera has been developed to guarantee the accuracy of the data. Different sessions have been recorded for each user including not only static head scenarios but also controlled displacements and even free head movements. The database is an outstanding framework to test both gaze estimation algorithms and head pose estimation methods.
  • PublicationOpen Access
    Fisiopatología y técnicas de registro de los movimientos oculares
    (Gobierno de Navarra, 2009) Gila Useros, Luis; Villanueva Larre, Arantxa; Cabeza Laguna, Rafael; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    En el control de la motilidad ocular intervienen varios sistemas funcionales. Los reflejos vestíbulo-oculares y optocinéticos son respuestas automáticas para compensar los movimientos de la cabeza y del entorno visual y poder estabilizar la imagen retiniana sobre un determinado punto de fijación. Los movimientos sacádicos son rápidos desplazamientos de la fijación de un punto a otro del campo visual. Los movimientos de persecución lenta consisten en el seguimiento de estímulos móviles con la mirada. Finalmente, existen movimientos involuntarios de muy escasa amplitud que se producen durante el mantenimiento de la fijación. Cada modalidad funcional de movimiento depende de circuitos neuronales específicos que trabajan coordinadamente para codificar la contracción de los músculos oculomotores correspondiente a la posición adecuada en cada momento. Estos sistemas neuronales pueden verse alterados por múltiples procesos neurológicos de diferente naturaleza y localización dando lugar a una variada gama de trastornos oculomotores. Se revisan los aspectos más destacados de la fisiopatología y de los sistemas de registro de los movimientos oculares.
  • PublicationOpen Access
    Evaluation of accurate eye corner detection methods for gaze estimation
    (Bern Open Publishing, 2014) Bengoechea Irañeta, José Javier; Cerrolaza Martínez, Juan José; Villanueva Larre, Arantxa; Cabeza Laguna, Rafael; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    Accurate detection of iris center and eye corners appears to be a promising approach for low cost gaze estimation. In this paper we propose novel eye inner corner detection methods. Appearance and feature based segmentation approaches are suggested. All these methods are exhaustively tested on a realistic dataset containing images of subjects gazing at different points on a screen. We have demonstrated that a method based on a neural network presents the best performance even in light changing scenarios. In addition to this method, algorithms based on AAM and Harris corner detector present better accuracies than recent high performance face points tracking methods such as Intraface.
  • PublicationOpen Access
    Robust and accurate 2D-tracking-based 3D positioning method: application to head pose estimation
    (Elsevier, 2019) Ariz Galilea, Mikel; Villanueva Larre, Arantxa; Cabeza Laguna, Rafael; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    Head pose estimation (HPE) is currently a growing research field, mainly because of the proliferation of human–computer interfaces (HCI) in the last decade. It offers a wide variety of applications, including human behavior analysis, driver assistance systems or gaze estimation systems. This article aims to contribute to the development of robust and accurate HPE methods based on 2D tracking of the face, enhancing performance of both 2D point tracking and 3D pose estimation. We start with a baseline method for pose estimation based on POSIT algorithm. A novel weighted variant of POSIT is then proposed, together with a methodology to estimate weights for the 2D–3D point correspondences. Further, outlier detection and correction methods are also proposed in order to enhance both point tracking and pose estimation. With the aim of achieving a wider impact, the problem is addressed using a global approach: all the methods proposed are generalizable to any kind of object for which an approximate 3D model is available. These methods have been evaluated for the specific task of HPE using two different head pose video databases; a recently published one that reflects the expected performance of the system in current technological conditions, and an older one that allows an extensive comparison with state-of-the-art HPE methods. Results show that the proposed enhancements improve the accuracy of both 2D facial point tracking and 3D HPE, with respect to the implemented baseline method, by over 15% in normal tracking conditions and over 30% in noisy tracking conditions. Moreover, the proposed HPE system outperforms the state of the art on the two databases.
  • PublicationOpen Access
    Gaze tracking system model based on physical parameters
    (World Scientific Publishing, 2007) Villanueva Larre, Arantxa; Cabeza Laguna, Rafael; Porta Cuéllar, Sonia; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    In the past years, research in eye tracking development and applications has attracted much attention and the possibility of interacting with a computer employing just gaze information is becoming more and more feasible. Efforts in eye tracking cover a broad spectrum of fields, system mathematical modeling being an important aspect in this research. Expressions relating to several elements and variables of the gaze tracker would lead to establish geometric relations and to find out symmetrical behaviors of the human eye when looking at a screen. To this end a deep knowledge of projective geometry as well as eye physiology and kinematics are basic. This paper presents a model for a bright-pupil technique tracker fully based on realistic parameters describing the system elements. The system so modeled is superior to that obtained with generic expressions based on linear or quadratic expressions. Moreover, model symmetry knowledge leads to more effective and simpler calibration strategies, resulting in just two calibration points needed to fit the optical axis and only three points to adjust the visual axis. Reducing considerably the time spent by other systems employing more calibration points renders a more attractive model.
  • PublicationOpen Access
    Models for gaze tracking systems
    (Hindawi Publishing Corporation, 2007) Villanueva Larre, Arantxa; Cabeza Laguna, Rafael; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    One of the most confusing aspects that one meets when introducing oneself into gaze tracking technology is the wide variety, in terms of hardware equipment, of available systems that provide solutions to the same matter, that is, determining the point the subject is looking at. The calibration process permits generally adjusting nonintrusive trackers based on quite different hardware and image features to the subject. The negative aspect of this simple procedure is that it permits the system to work properly but at the expense of a lack of control over the intrinsic behavior of the tracker. The objective of the presented article is to overcome this obstacle to explore more deeply the elements of a video-oculographic system, that is, eye, camera, lighting, and so forth, from a purely mathematical and geometrical point of view. The main contribution is to find out the minimum number of hardware elements and image features that are needed to determine the point the subject is looking at. A model has been constructed based on pupil contour and multiple lighting, and successfully tested with real subjects. On the other hand, theoretical aspects of video-oculographic systems have been thoroughly reviewed in order to build a theoretical basis for further studies.
  • PublicationOpen Access
    Attention to online channels across the path to purchase: an eye-tracking study
    (Elsevier, 2019) Cortiñas Ugalde, Mónica; Cabeza Laguna, Rafael; Chocarro Eguaras, Raquel; Villanueva Larre, Arantxa; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Enpresen Kudeaketa; Institute for Advanced Research in Business and Economics - INARBE; Ingeniería Eléctrica, Electrónica y de Comunicación; Gestión de Empresas
    Currently, consumers display what is known as omnichannel behavior: the combined use of digital and physical channels providing them with multiple points of contact with firms. We combine the stimulus-organism-response (S-O-R) model and visual attention theory to study how customers’ attention to digital channels varies across different purchasing tasks. We use eye-tracking techniques to observe attention in an experimental setting. The experimental design is composed of four purchasing tasks in four different product categories and measures the attention to the website and time spent on each task in addition to several control variables. The results show that shoppers attend to more areas of the website for purposes of website exploration than for performing purchase tasks. The most complex and time-consuming task for shoppers is the assessment of purchase options. The actual purchase and post-purchase tasks require less time and the inspection of fewer areas of interest. Personal involvement also plays a role in determining these patterns by increasing attention to the product area.
  • PublicationOpen Access
    SeTA: semiautomatic tool for annotation of eye tracking images
    (ACM, 2019) Larumbe Bergera, Andoni; Porta Cuéllar, Sonia; Cabeza Laguna, Rafael; Villanueva Larre, Arantxa; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    Availability of large scale tagged datasets is a must in the field of deep learning applied to the eye tracking challenge. In this paper, the potential of Supervised-Descent-Method (SDM) as a semiautomatic labelling tool for eye tracking images is shown. The objective of the paper is to evidence how the human effort needed for manually labelling large eye tracking datasets can be radically reduced by the use of cascaded regressors. Different applications are provided in the fields of high and low resolution systems. An iris/pupil center labelling is shown as example for low resolution images while a pupil contour points detection is demonstrated in high resolution. In both cases manual annotation requirements are drastically reduced.