Evaluation of accurate eye corner detection methods for gaze estimation

Date

2014

Director

Publisher

Bern Open Publishing
Acceso abierto / Sarbide irekia
Artículo / Artikulua
Versión publicada / Argitaratu den bertsioa

Project identifier

Impacto
OpenAlexGoogle Scholar
No disponible en Scopus

Abstract

Accurate detection of iris center and eye corners appears to be a promising approach for low cost gaze estimation. In this paper we propose novel eye inner corner detection methods. Appearance and feature based segmentation approaches are suggested. All these methods are exhaustively tested on a realistic dataset containing images of subjects gazing at different points on a screen. We have demonstrated that a method based on a neural network presents the best performance even in light changing scenarios. In addition to this method, algorithms based on AAM and Harris corner detector present better accuracies than recent high performance face points tracking methods such as Intraface.

Description

Keywords

Eye tracking, Low cost, Eye inner corner

Department

Ingeniería Eléctrica, Electrónica y de Comunicación / Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren

Faculty/School

Degree

Doctorate program

item.page.cita

item.page.rights

This work is licensed under a Creative Commons Attribution 4.0 International License.

Licencia

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.