López Martín, Antonio
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
López Martín
First Name
Antonio
person.page.departamento
Ingeniería Eléctrica, Electrónica y de Comunicación
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
41 results
Search Results
Now showing 1 - 10 of 41
Publication Open Access ±0.25 V Class-AB CMOS capacitance multiplier and precision rectifiers(IEEE, 2019) Pourashraf, Shirin; Ramírez-Angulo, Jaime; Hinojo Montero, José María; González Carvajal, Ramón; López Martín, Antonio; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenReduction of minimum supply requirements is a crucial aspect to decrease the power consumption in VLSI systems. A high performance capacitance multiplier able to operate with supplies as low as ±0.25 V is presented. It is based on adaptively biased class-AB current mirrors which provide high current efficiency. Measurement results of a factor 11 capacitance multiplier fabricated in 180 nm CMOS technology verify theoretical claims. Moreover, low-voltage precision rectifiers based on the same class-AB current mirrors are designed and fabricated in the same CMOS process. They generate output currents over 100 times larger than the quiescent current. Both proposed circuits have 300 nW static power dissipation when operating with ±0.25 V supplies.Publication Open Access Enhanced single-stage folded cascode OTA suitable for large capacitive loads(IEEE, 2018) López Martín, Antonio; Garde Luque, María Pilar; Algueta-Miguel, Jose M.; Cruz Blas, Carlos Aristóteles de la; Carvajal, Ramón G.; Ramírez-Angulo, Jaime; Institute of Smart Cities - ISCAn enhanced single-stage folded cascode operational transconductance amplifier able to drive large capacitive loads is presented. Circuits that adaptively bias the input differential pair and the current folding stage are employed, which provide class AB operation with dynamic current boosting and increased gainbandwidth (GBW) product. Measurement results of a test chip prototype fabricated in a 0.5-µm CMOS process show an increase in slew rate and GBW by a factor of 30 and 15, respectively, versus the class A version using the same supply voltage and bias currents. Overhead in other performance metrics is small.Publication Open Access Wide-swing class AB regulated cascode current mirror(IEEE, 2020) Garde Luque, María Pilar; López Martín, Antonio; Cruz Blas, Carlos Aristóteles de la; Carvajal, Ramón G.; Ramírez-Angulo, Jaime; Institute of Smart Cities - ISCA micropower regulated cascode CMOS current mirror is presented, combining floating gate and quasi floating gate MOS transistors to achieve both wide swing and class AB operation, respectively. Measurement results for a 0.5 μm CMOS test chip prototype are included, showing that the current mirror can provide a THD at 100 kHz of -44 dB for a supply voltage of ±0.75 V and input current amplitudes 20 times larger than the bias current.Publication Open Access AC coupled amplifier with a resistance multiplier technique for ultra-low frequency operation(Elsevier, 2022) Martincorena Arraiza, Maite; Cruz Blas, Carlos Aristóteles de la; Carlosena García, Alfonso; López Martín, Antonio; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaThis paper proposes a novel, tunable AC coupled capacitive feedback amplifier, exhibiting an ultra-low high pass corner frequency. This is accomplished by actively boosting the output resistive value of a MOS transistor in weak inversion. The circuit is based on a more general architecture, recently proposed by the authors, and is analyzed in terms of its capability to achieve ultra-low frequency operation, its DC performance, and noise. The proposed technique is demonstrated via measurement results from a fabricated test chip prototype using a standard 0.18 µm CMOS technology. The proposed amplifier provides a tunable high pass corner frequency from 20 mHz to 475 mHz, consuming 4.71 μW and a total area of 0.069 mm2.Publication Open Access Super class AB RFC OTA with adaptive local common-mode feedback(Institution of Engineering and Technology, 2018) Garde Luque, María Pilar; López Martín, Antonio; Carvajal, Ramón G.; Ramírez-Angulo, Jaime; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de ComunicaciónA super class AB recycling folded cascode operational transconductance amplifier is presented. It employs local common-mode feedback using two matched tuneable active resistors, allowing to adapt the amplifier to different process variations and loads. Measurement results from a test chip prototype fabricated in a 0.5 μm CMOS process validate the proposal.Publication Open Access Analog lock-in amplifier design using subsampling for accuracy enhancement in GMI sensor applications(MDPI, 2023) Algueta-Miguel, Jose M.; Beato López, Juan Jesús; López Martín, Antonio; Ciencias; Zientziak; Institute of Smart Cities - ISC; Institute for Advanced Materials and Mathematics - INAMAT2; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, PJUPNA2005A frequency downscaling technique for enhancing the accuracy of analog lock-in amplifier (LIA) architectures in giant magneto-impedance (GMI) sensor applications is presented in this paper. As a proof of concept, the proposed method is applied to two different LIA topologies using, respectively, analog and switching-based multiplication for phase-sensitive detection. Specifically, the operation frequency of both the input and the reference signals of the phase-sensitive detector (PSD) block of the LIA is reduced through a subsampling process using sample-and-hold (SH) circuits. A frequency downscaling from 200 kHz, which is the optimal operating frequency of the employed GMI sensor, to 1 kHz has been performed. In this way, the proposed technique exploits the inherent advantages of analog signal multiplication at low frequencies, while the principle of operation of the PSD remains unaltered. The circuits were assembled using discrete components, and the frequency downscaling proposal was experimentally validated by comparing the measurement accuracy with the equivalent conventional circuits. The experimental results revealed that the error in the signal magnitude measurements was reduced by a factor of 8 in the case of the analog multipliers and by a factor of 21 when a PSD based on switched multipliers was used. The error in-phase detection using a two-phase LIA was also reduced by more than 25%.Publication Open Access Pseudo-three-stage Miller op-amp with enhanced small-signal and large-signal performance(IEEE, 2019) Paul, Anindita; Ramírez-Angulo, Jaime; López Martín, Antonio; González Carvajal, Ramón; Rocha-Pérez, José Miguel; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de ComunicaciónA simple technique to implement highly power efficient class AB-AB Miller op-amps is presented in this paper. It uses a composite input stage with resistive local common mode feedback that provides class AB operation to the input stage and essentially enhances the op-amp's effective transconductance gain, the dc open-loop gain, the gain-bandwidth product, and slew rate with just moderate increase in power dissipation. The experimental results of op-amps in strong inversion and subthreshold fabricated in a 130-nm standard CMOS technology validate the proposed approach. The op-amp has 9 V·pF/μs·μW large-signal figure of merit (FOM) and 17 MHz · pF/μW small-signal FOM with 1.2-V supply voltage. In subthreshold, the op-amp has 10 V · pF/μs · μW large-signal FOM and 92 MHz · pF/μW small-signal FOM with 0.5-V supply voltage.Publication Open Access Low-voltage 0.81mW, 1-32 CMOS VGA with 5% bandwidth variations and -38dB DC rejection(IEEE, 2020) López Martín, Antonio; Rico-Aniles, Héctor Daniel; Ramírez-Angulo, Jaime; Rocha-Pérez, José Miguel; González Carvajal, Ramón; Institute of Smart Cities - ISCA CMOS low-voltage amplifier with approximately constant bandwidth and DC rejection is introduced. The design is based on the cascade of a wide linear input range OTA, an op-amp and a servo-loop with extremely large time constants. It operates with +/-0:45V supplies and a power consumption of 0.81mW in 180nm technology. The bandwidth changes only from 9.08MHz to 9.54MHz over a gain range from 1 to 32, it has a 9.8Hz low cutoff frequency and a DC attenuation of 38dBs. DC floating voltage sources are used to keep the gates of all differential pairs at a constant value close to a supply rail in order to operate the amplifier circuit with minimum supply voltage. The proposed circuit has small and large signal figures of merit FOMSS=5380 (MHz*pF/mW) and FOMLS=0:0085((V/ns)*pF/mA) for a nominal gain A=32.Publication Open Access Energy harvesting approaches in IoT scenarios with very low ambient energy(European Association for the Development of Renewable Energy, Environment and Power Quality (EA4EPQ), 2019) López Martín, Antonio; Algueta-Miguel, Jose M.; Matías Maestro, Ignacio; Institute of Smart Cities - ISCThe feasibility of multi-source energy harvesting in Internet of Things (IoT) scenarios with low and intermittent ambient energy is addressed. As a relevant case study, application to a smart cargo container system is analysed. The most relevant features of the main energy sources available in this target application are identified, and various transducers adapted to such sources are evaluated. Measurement results indicate that combined piezoelectric and thermoelectric generation inside cargo containers can significantly extend the battery lifetime of IoT end nodes embedded in such containers.Publication Open Access Distributed opportunistic wireless mapping system towards smart city service provision(IEEE, 2021) Villadangos Alonso, Jesús; Falcone Lanas, Francisco; López Martín, Antonio; Astrain Escola, José Javier; Sanchis Gúrpide, Pablo; Matías Maestro, Ignacio; Estatistika, Informatika eta Matematika; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Estadística, Informática y Matemáticas; Ingeniería Eléctrica, Electrónica y de ComunicaciónThe knowledge of wireless signal distribution within an urban scenario can provide useful information to users as well as to enhance connectivity and device operation or to perform municipal logistics based on crowd density and user mobility patterns. In this work, a distributed wireless mapping system, based on a combination of opportunistic nodes such as smartphones which map geolocated WiFi access point connection and received power levels, and a cloud-based information gathering architecture is described. The proposed system has been tested in the framework of the Smart City platform of the city of Pamplona, providing signal distribution heat maps, which can be used for multiple municipal services.