López García, José Luis
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
López García
First Name
José Luis
person.page.departamento
Estadística, Informática y Matemáticas
person.page.instituteName
InaMat2. Instituto de Investigación en Materiales Avanzados y Matemáticas
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
26 results
Search Results
Now showing 1 - 10 of 26
Publication Embargo Convergent and asymptotic expansions of the displacement elastodynamic integral in terms of known functions(Elsevier, 2025-05-01) Ferreira González, Chelo; López García, José Luis; Pérez Sinusía, Ester; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2The integral [Formula presented] plays an essential role in the study of several phenomena in the theory of elastodynamics (Ceballos and Prato, 2014). But an exact evaluation of this integral in terms of known functions is not possible. In this paper, we derive an analytic representation of this integral in the form of convergent series of elementary functions and hypergeometric functions. This series have an asymptotic character for either, small values of the variable s, or for small values of the variables r and R. It is derived by using the asymptotic technique designed in Lopez (2008) for Mellin convolution integrals. Some numerical experiments show the accuracy of the approximation supplied by the first few terms of the expansion.Publication Open Access New recurrence relations for several classical families of polynomials(Taylor and Francis, 2021) Ferreira González, Chelo; López García, José Luis; Pérez Sinusía, Ester; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Estadística, Informática y Matemáticas; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaIn this paper, we derive new recurrence relations for the following families of polynomials: nörlund polynomials, generalized Bernoulli polynomials, generalized Euler polynomials, Bernoulli polynomials of the second kind, Buchholz polynomials, generalized Bessel polynomials and generalized Apostol–Euler polynomials. The recurrence relations are derived from a differential equation of first order and a Cauchy integral representation obtained from the generating function of these polynomials.Publication Open Access The Pearcey integral in the highly oscillatory region II(Elsevier, 2025-08-01) Ferreira González, Chelo; López García, José Luis; Pérez Sinusía, Ester; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2We consider the Pearcey integral P(x, y) for large values of |x| and bounded values of |y|. The standard saddle point analysis is difficult to apply because the Pearcey integral is highly oscillating in this region. To overcome this problem we use the modified saddle point method introduced in López et al. (2009). A complete asymptotic analysis is possible with this method, and we derive a complete asymptotic expansion of P(x, y) for large |x|, accompanied by the exact location of the Stokes lines. There are two Stokes lines that divide the complex x−plane in two different sectors in which P(x, y) behaves differently when |x| is large. The asymptotic approximation is the sum of two asymptotic series whose terms are elementary functions of x and y. Both of them are of Poincaré type; one of them is given in terms of inverse powers of x; the other one in terms of inverse powers of x 1/2 , and it is multiplied by an exponential factor that behaves differently in the two mentioned sectors. Some numerical experiments illustrate the accuracy of the approximation.Publication Open Access Asymptotic approximation of a highly oscillatory integral with application to the canonical catastrophe integrals(Wiley, 2023) Ferreira González, Chelo; López García, José Luis; Pérez Sinusía, Ester; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaWe consider the highly oscillatory integral 𝐹(𝑤) ∶= ∫ ∞ −∞ 𝑒𝑖𝑤(𝑡𝐾+2+𝑒𝑖𝜃𝑡𝑝) 𝑔(𝑡)𝑑𝑡 for large positive values of 𝑤, −𝜋 < 𝜃 ≤ 𝜋, 𝐾 and 𝑝 positive integers with 1 ≤ 𝑝 ≤ 𝐾, and 𝑔(𝑡) an entire function. The standard saddle point method is complicated and we use here a simplified version of this method introduced by López et al. We derive an asymptotic approximation of this integral when 𝑤 → +∞ for general values of 𝐾 and 𝑝 in terms of elementary functions, and determine the Stokes lines. For 𝑝 ≠ 1, the asymptotic behavior of this integral may be classified in four different regions according to the even/odd character of the couple of parameters 𝐾 and 𝑝; the special case 𝑝=1 requires a separate analysis. As an important application, we consider the family of canonical catastrophe integrals Ψ𝐾(𝑥1, 𝑥2,…,𝑥𝐾) for large values of one of its variables, say 𝑥𝑝, and bounded values of the remaining ones. This family of integrals may be written in the form 𝐹(𝑤) for appropriate values of the parameters 𝑤, 𝜃 and the function 𝑔(𝑡). Then, we derive an asymptotic approximation of the family of canonical catastrophe integrals for large |𝑥𝑝|. The approximations are accompanied by several numerical experiments. The asymptotic formulas presented here fill up a gap in the NIST Handbook of Mathematical Functions by Olver et al.Publication Open Access Orthogonal basis for the optical transfer function(Optical Society of America, 2016) Ferreira González, Chelo; López García, José Luis; Navarro, Rafael; Pérez Sinusía, Ester; Ingeniería Matemática e Informática; Matematika eta Informatika IngeniaritzaWe propose systems of orthogonal functions qn to represent optical transfer functions (OTF) characterized by including the diffraction-limited OTF as the first basis function q0 OTF perfect. To this end, we apply a powerful and rigorous theoretical framework based on applying the appropriate change of variables to well-known orthogonal systems. Here we depart from Legendre polynomials for the particular case of rotationally symmetric OTF and from spherical harmonics for the general case. Numerical experiments with different examples show that the number of terms necessary to obtain an accurate linear expansion of the OTF mainly depends on the image quality. In the rotationally symmetric case we obtained a reasonable accuracy with approximately 10 basis functions, but in general, for cases of poor image quality, the number of basis functions may increase and hence affect the efficiency of the method. Other potential applications, such as new image quality metrics are also discussed.Publication Open Access The use of two-point Taylor expansions in singular one-dimensional boundary value problems I(Elsevier, 2018) Ferreira González, Chelo; López García, José Luis; Pérez Sinusía, Ester; Matematika eta Informatika Ingeniaritza; Institute for Advanced Materials and Mathematics - INAMAT2; Ingeniería Matemática e InformáticaWe consider the second-order linear differential equation (x + 1)y′′ + f(x)y′ + g(x)y = h(x) in the interval (−1, 1) with initial conditions or boundary conditions (Dirichlet, Neumann or mixed Dirichlet-Neumann). The functions f(x), g(x) and h(x) are analytic in a Cassini disk Dr with foci at x = ±1 containing the interval [−1, 1]. Then, the end point of the interval x = −1 may be a regular singular point of the differential equation. The two-point Taylor expansion of the solution y(x) at the end points ±1 is used to study the space of analytic solutions in Dr of the differential equation, and to give a criterion for the existence and uniqueness of analytic solutions of the boundary value problem. This method is constructive and provides the two-point Taylor approximation of the analytic solutions when they exist.Publication Open Access Uniform convergent expansions of the error function in terms of elementary functions(Springer, 2023) Ferreira González, Chelo; López García, José Luis; Pérez Sinusía, Ester; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaWe derive a new analytic representation of the error function erfz in the form of a convergent series whose terms are exponential and rational functions. The expansion holds uniformly in z in the double sector | arg (±z) | <π/4. The expansion is accompanied by realistic error bounds.Publication Open Access New series expansions of the 3F2 function(2015) López García, José Luis; Pagola Martínez, Pedro Jesús; Pérez Sinusía, Ester; Ingeniería Matemática e Informática; Matematika eta Informatika IngeniaritzaWe can use the power series definition of 3F2(a1, a2, a3; b1, b2; z) to compute this function for z in the unit disk only. In this paper we obtain new expansions of this function that are convergent in larger domains. Some of these expansions involve the polynomial 3F2(a1,−n, a3; b1, b2; z) evaluated at certain points z. Other expansions involve the Gauss hypergeometric function 2F1. The domain of convergence is sometimes a disk, other times a half-plane, other times the region |z|2 < 4|1 − z|. The accuracy of the approximation given by these expansions is illustrated with numerical experiments.Publication Open Access Asymptotic and convergent expansions for solutions of third-order linear differential equations with a large parameter(Shanghai Normal University, 2018) Ferreira González, Chelo; López García, José Luis; Pérez Sinusía, Ester; Ingeniería Matemática e Informática; Matematika eta Informatika IngeniaritzaIn previous papers [6–8,10], we derived convergent and asymptotic expansions of solutions of second order linear differential equations with a large parameter. In those papers we generalized and developed special cases not considered in Olver’s theory [Olver, 1974]. In this paper we go one step forward and consider linear differential equations of the third order: y ′′′ +aΛ2y′ +bΛ3y = f(x)y′ +g(x)y, with a, b ∈ C fixed, f′ and g continuous, and Λ a large positive parameter. We propose two different techniques to handle the problem: (i) a generalization of Olver’s method and (ii) the transformation of the differential problem into a fixed point problem from which we construct an asymptotic sequence of functions that converges to the unique solution of the problem. Moreover, we show that this second technique may also be applied to nonlinear differential equations with a large parameter. As an application of the theory, we obtain new convergent and asymptotic expansions of the Pearcey integral P(x, y) for large |x|.Publication Open Access The asymptotic expansion of the swallowtail integral in the highly oscillatory region(Elsevier, 2018) Ferreira González, Chelo; López García, José Luis; Pérez Sinusía, Ester; Ingeniería Matemática e Informática; Matematika eta Informatika Ingeniaritza; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaThe mathematical models of many short wavelength phenomena, specially wave propagation and optical diffraction, contain, as a basic ingredient, oscillatory integrals with several nearly coincident stationary phase or saddle points. The uniform approximation of those integrals can be expressed in terms of certain canonical integrals and their derivatives [2,16]. The importance of these canonical diffraction integrals is stressed in [14] by means of the following sentence: The role played by these canonical diffraction integrals in the analysis of caustic wave fields is analogous to that played by complex exponentials in plane wave theory. Apart from their mathematical importance in the uniform asymptotic approximation of oscillatory integrals [12], the canonical diffraction integrals have physical applications in the description of surface gravity waves [11], [17], bifurcation sets, optics, quantum mechanics, chemical physics [4] and acoustics (see [1], Section 36.14 and references there in). To our knowledge, the first application of this family of integrals traces back to the description of the disturbances on a water surface produced, for example, by a traveling ship. These disturbances form a familiar pattern of bow and stern waves which was first explained mathematically by Lord Kelvin [10] using these integrals.
- «
- 1 (current)
- 2
- 3
- »