Person:
Garde Lecumberri, Gonzalo

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Garde Lecumberri

First Name

Gonzalo

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

ORCID

0000-0002-3635-6530

person.page.upna

811867

Name

Search Results

Now showing 1 - 8 of 8
  • PublicationOpen Access
    Synthetic 2D point clouds generator
    (2019) Garde Lecumberri, Gonzalo; Villanueva Larre, Arantxa; Escuela Técnica Superior de Ingenieros Industriales y de Telecomunicación; Telekomunikazio eta Industria Ingeniarien Goi Mailako Eskola Teknikoa
    Every day, while developing applications and products to solve a huge number of today problems, data from real world is registered and consumed. The registration of this kind of data is costly, and on its quality depends on the correct behaviour of the solutions developed. Some of this data are 2-dimensional point clouds, for example spatial points registered by sensors. In this project, we present and investigate the use Generative Adversarial Networks and Neural Style Transfer over 2-dimensional point clouds in order to develop a tool to generate synthetic but realistic data based on real ones. We also study the possibility of combining these two technologies to improve each other's behaviour.
  • PublicationOpen Access
    Accurate pupil center detection in off-the-shelf eye tracking systems using convolutional neural networks
    (MDPI, 2021) Larumbe Bergera, Andoni; Garde Lecumberri, Gonzalo; Porta Cuéllar, Sonia; Cabeza Laguna, Rafael; Villanueva Larre, Arantxa; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Remote eye tracking technology has suffered an increasing growth in recent years due to its applicability in many research areas. In this paper, a video-oculography method based on convolutional neural networks (CNNs) for pupil center detection over webcam images is proposed. As the first contribution of this work and in order to train the model, a pupil center manual labeling procedure of a facial landmark dataset has been performed. The model has been tested over both real and synthetic databases and outperforms state-of-the-art methods, achieving pupil center estimation errors below the size of a constricted pupil in more than 95% of the images, while reducing computing time by a 8 factor. Results show the importance of use high quality training data and well-known architectures to achieve an outstanding performance.
  • PublicationOpen Access
    Synthetic gaze data augmentation for improved user calibration
    (Springer, 2021) Garde Lecumberri, Gonzalo; Larumbe Bergera, Andoni; Porta Cuéllar, Sonia; Cabeza Laguna, Rafael; Villanueva Larre, Arantxa; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    In this paper, we focus on the calibration possibilitiesó of a deep learning based gaze estimation process applying transfer learning, comparing its performance when using a general dataset versus when using a gaze specific dataset in the pretrained model. Subject calibration has demonstrated to improve gaze accuracy in high performance eye trackers. Hence, we wonder about the potential of a deep learning gaze estimation model for subject calibration employing fine-tuning procedures. A pretrained Resnet-18 network, which has great performance in many computer vision tasks, is fine-tuned using user’s specific data in a few shot adaptive gaze estimation approach. We study the impact of pretraining a model with a synthetic dataset, U2Eyes, before addressing the gaze estimation calibration in a real dataset, I2Head. The results of the work show that the success of the individual calibration largely depends on the balance between fine-tuning and the standard supervised learning procedures and that using a gaze specific dataset to pretrain the model improves the accuracy when few images are available for calibration. This paper shows that calibration is feasible in low resolution scenarios providing outstanding accuracies below 1.5 ∘ ∘ of error.
  • PublicationOpen Access
    Migración teledistribución en San Martín de Unx: diseño comparativo HFC-FTTH
    (2017) Garde Lecumberri, Gonzalo; Benito Pertusa, David; Gómez Laso, Miguel Ángel; Escuela Técnica Superior de Ingenieros Industriales y de Telecomunicación; Telekomunikazio eta Industria Ingeniarien Goi Mailako Eskola Teknikoa
    En este proyecto se aborda la evolución de la red de televisión por cable (CATV) existente en la población navarra de San Martín de Unx de manera que se acondicione para cumplir con los objetivos de velocidad mínimos establecidos por la Agenda Digital Europea así como servicios de básicos televisión. A la hora de realizar esta evolución, se plantean dos soluciones diferentes: por una parte, una solución basada en fibra hasta el hogar (FTTH) y, por otra parte, una solución basada en una red híbrida de fibra coaxial (HFC). El objetivo final del proyecto será el de poder establecer una comparación entre estos dos planteamientos de forma que se pueda evaluar cuál se adapta mejor a las necesidades de este tipo de poblaciones.
  • PublicationOpen Access
    Low-cost eye tracking calibration: a knowledge-based study
    (MDPI, 2021) Garde Lecumberri, Gonzalo; Larumbe Bergera, Andoni; Bossavit, Benoît; Porta Cuéllar, Sonia; Cabeza Laguna, Rafael; Villanueva Larre, Arantxa; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    Subject calibration has been demonstrated to improve the accuracy in high-performance eye trackers. However, the true weight of calibration in off-the-shelf eye tracking solutions is still not addressed. In this work, a theoretical framework to measure the effects of calibration in deep learning-based gaze estimation is proposed for low-resolution systems. To this end, features extracted from the synthetic U2Eyes dataset are used in a fully connected network in order to isolate the effect of specific user’s features, such as kappa angles. Then, the impact of system calibration in a real setup employing I2Head dataset images is studied. The obtained results show accuracy improvements over 50%, probing that calibration is a key process also in low-resolution gaze estimation scenarios. Furthermore, we show that after calibration accuracy values close to those obtained by high-resolution systems, in the range of 0.7°, could be theoretically obtained if a careful selection of image features was performed, demonstrating significant room for improvement for off-the-shelf eye tracking systems
  • PublicationOpen Access
    Gaze estimation problem tackled through synthetic images
    (Association for Computing Machinery (ACM), 2020) Garde Lecumberri, Gonzalo; Larumbe Bergera, Andoni; Bossavit, Benoît; Cabeza Laguna, Rafael; Porta Cuéllar, Sonia; Villanueva Larre, Arantxa; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    In this paper, we evaluate a synthetic framework to be used in the field of gaze estimation employing deep learning techniques. The lack of sufficient annotated data could be overcome by the utilization of a synthetic evaluation framework as far as it resembles the behavior of a real scenario. In this work, we use U2Eyes synthetic environment employing I2Head datataset as real benchmark for comparison based on alternative training and testing strategies. The results obtained show comparable average behavior between both frameworks although significantly more robust and stable performance is retrieved by the synthetic images. Additionally, the potential of synthetically pretrained models in order to be applied in user's specific calibration strategies is shown with outstanding performances.
  • PublicationOpen Access
    U2Eyes: a binocular dataset for eye tracking and gaze estimation
    (IEEE, 2019) Porta Cuéllar, Sonia; Bossavit, Benoît; Cabeza Laguna, Rafael; Larumbe Bergera, Andoni; Garde Lecumberri, Gonzalo; Villanueva Larre, Arantxa; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    Theory shows that huge amount of labelled data are needed in order to achieve reliable classification/regression methods when using deep/machine learning techniques. However, in the eye tracking field, manual annotation is not a feasible option due to the wide variability to be covered. Hence, techniques devoted to synthesizing images show up as an opportunity to provide vast amounts of annotated data. Considering that the well-known UnityEyes tool provides a framework to generate single eye images and taking into account that both eyes information can contribute to improve gaze estimation accuracy we present U2Eyes dataset, that is publicly available. It comprehends about 6 million of synthetic images containing binocular data. Furthermore, the physiology of the eye model employed is improved, simplified dynamics of binocular vision are incorporated and more detailed 2D and 3D labelled data are provided. Additionally, an example of application of the dataset is shown as work in progress. Employing U2Eyes as training framework Supervised Descent Method (SDM) is used for eyelids segmentation. The model obtained as result of the training process is then applied on real images from GI4E dataset showing promising results.
  • PublicationOpen Access
    Beyond basic tuning: exploring discrepancies in user and setup calibration for gaze estimation
    (ACM, 2024-06-04) Garde Lecumberri, Gonzalo; Armendáriz Armenteros, José María; Beruete Cerezo, Rubén; Cabeza Laguna, Rafael; Villanueva Larre, Arantxa; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza
    Calibrating gaze estimation models is crucial to maximize the effectiveness of these systems, although its implementation also poses challenges related to usability. Therefore, the simplification of this process is key. In this work, we dissect the impact of calibration due to both the environment and the user in gaze estimation models that employ general-purpose devices. We aim to replicate a workflow close to the final application by starting with pre-trained models and subsequently calibrating them using different strategies, testing under various camera arrangements and user-specific variability. The results indicate differentiation between the impact due to the user and the setup, being the components due to the users a slightly more pronounced impact than those related to the setup, opening the door to understanding calibration as a composite process. In any case, the development of calibration-free remote gaze estimation solutions remains a great challenge, given the crucial role of calibration.