Accurate pupil center detection in off-the-shelf eye tracking systems using convolutional neural networks
Date
Director
Publisher
Impacto
Abstract
Remote eye tracking technology has suffered an increasing growth in recent years due to its applicability in many research areas. In this paper, a video-oculography method based on convolutional neural networks (CNNs) for pupil center detection over webcam images is proposed. As the first contribution of this work and in order to train the model, a pupil center manual labeling procedure of a facial landmark dataset has been performed. The model has been tested over both real and synthetic databases and outperforms state-of-the-art methods, achieving pupil center estimation errors below the size of a constricted pupil in more than 95% of the images, while reducing computing time by a 8 factor. Results show the importance of use high quality training data and well-known architectures to achieve an outstanding performance.
Description
Keywords
Department
Faculty/School
Degree
Doctorate program
item.page.cita
item.page.rights
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.