Marcos Álvarez, Javier
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Marcos Álvarez
First Name
Javier
person.page.departamento
Ingeniería Eléctrica, Electrónica y de Comunicación
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
20 results
Search Results
Now showing 1 - 10 of 20
Publication Open Access On the calculation of the STC power of PV generators by using typical monitoring system data(2017) Muñoz Escribano, Mikel; Parra Laita, Íñigo de la; García Solano, Miguel; Marcos Álvarez, Javier; Marroyo Palomo, Luis; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISC; Ingeniería Eléctrica y ElectrónicaThe properly in-field characterization of the power at Standard Test Conditions, PSTC, of PV generators is becoming increasingly important in order to evaluate their performance and its evolution in time. Within the state of art, the PSTC characterization procedures of PV arrays are mainly based on I-V curve measurements or PDC measurements performed by precision wattmeters. Those characterizations are usually carried out during discrete measurement campaigns, which does not allow a continuous tracking of the PSTC evolution. In this paper a new PSTC characterization procedure is proposed which is based on the DC power measurements performed by the own PV inverters connected to the PV arrays. This procedure enables an automatic and continuous calculation of the PSTC, which allows to observe its evolution and to detect possible anomalous trends, premature degradations, etc. The procedure has been validated in several PV generators of the large-scale Amareleja PV Plant (45.6 MWp). As showed in this paper, by using several day data and applying the adequate filters, a high accuracy in the PSTC calculation can be achieved, a similar accuracy to that obtained by using precision wattmeter measurements.Publication Open Access Compensation of forecast error in large PV plants with battery storage: associated strategies(2017) Marcos Álvarez, Javier; Parra Laita, Íñigo de la; Muñoz Escribano, Mikel; García Solano, Miguel; Marroyo Palomo, Luis; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISC; Ingeniería Eléctrica y ElectrónicaAs penetration rates of utility-scale photovoltaics (PV) increases, large PV plants will participate in the daily wholesale electricity market in the same way that wind farms. Then, PV plant owner can receive some kind of economic penalty depending on the forecast deviation. This opens the way to use a battery energy storage system (BESS) to compensate the prediction errors. Taking advance of the several 1-hour intra-diary market sessions, the PV plant owner can correct the prediction for the next hours. Hence, a 1-hour BESS SOC control can be implemented to avoid large energy requirements. Here we present two novel strategies which allow a large PV-BESS plant to fulfil the programme referred.Publication Open Access Outdoor performance of a CdTe based PV generator during 5 years of operation(IEEE, 2022) Guerra Menjívar, Moisés Roberto; Parra Laita, Íñigo de la; Marcos Álvarez, Javier; García Solano, Miguel; Marroyo Palomo, Luis; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenTogether with the huge growth of the traditional crystalline silicon (Si-x) PV manufacturers, other thin-film solar cells have also emerged such as cadmium telluride (CdTe) manufacturers. They are characterized by the fact that they were created to reduce costs and by the scarcity of silicon, from which the rest of the modules are made. Despite they need more space to generate the same amount of energy as crystalline modules, their price is supposed to be much lower, and argue that they have a better performance at high temperatures. However, real comparisons between the outdoor performance of CdTe and Si-x modules have been scarcely addressed in the literature. This paper provides a comparison under real operating conditions of a CdTe photovoltaic generator versus a conventional silicon generator during 5 years of operation in a mid-latitude area, identifying the causes of the differences observed.Publication Open Access Control strategies to smooth short-term power fluctuations in large photovoltaic plants using battery storage systems(MDPI, 2014) Marcos Álvarez, Javier; Parra Laita, Íñigo de la; García Solano, Miguel; Marroyo Palomo, Luis; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaThe variations in irradiance produced by changes in cloud cover can cause rapid fluctuations in the power generated by large photovoltaic (PV) plants. As the PV power share in the grid increases, such fluctuations may adversely affect power quality and reliability. Thus, energy storage systems (ESS) are necessary in order to smooth power fluctuations below the maximum allowable. This article first proposes a new control strategy (step-control), to improve the results in relation to two state-of-the-art strategies, ramp-rate control and moving average. It also presents a method to quantify the storage capacity requirements according to the three different smoothing strategies and for different PV plant sizes. Finally, simulations shows that, although the moving-average (MA) strategy requires the smallest capacity, it presents more losses (2–3 times more) and produces a much higher number of cycles over the ESS (around 10 times more), making it unsuitable with storage technologies as lithium-ion. The step-control shown as a better option in scenery with exigent ramp restrictions (around 2%/min) and distributed generation against the ramp-rate control in all ESS key aspects: 20% less of capacity, up to 30% less of losses and a 40% less of ageing. All the simulations were based on real PV production data, taken every 5 s in the course of one year (2012) from a number of systems with power outputs ranging from 550 kW to 40 MW.Publication Open Access Long-term degradation rate of crystalline silicon PV modules at commercial PV plants: an 82-MWp assessment over 10 years(Wiley, 2021) Pascual Miqueleiz, Julio María; Martínez Moreno, Francisco; García Solano, Miguel; Marcos Álvarez, Javier; Marroyo Palomo, Luis; Lorenzo Pigueiras, Eduardo; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de ComunicaciónDue to high competitiveness in the PV sector, despite the low degradation rate of crystalline silicon PV modules (below 0.5%/year), it is still important for utilities to know its actual value due to its impact on energy yield and hence, profitability, over the lifetime of a PV plant. However, uncertainties related to both the influence of downtime periods due to problems that may appear under normal operation of a commercial PV plant and to the measurement of degradation rates at PV plant level make this a challenging task. In order to obtain a significant value, in this paper, three measuring methods with different uncertainty sources are used for 82 MWp of PV modules on different locations in Spain and Portugal over 10 years. According to the different methods used and PV plants analyzed, excluding PV plants with problems, a range of degradation rates between 0.01 and 0.47%/year has been found. The overall average value observed is 0.27%/year. The findings of this work have also revealed the great importance of good operation and maintenance practices in order to keep overall low degradation rates.Publication Open Access A tool for the performance evaluation and failure detection of Amareleja PV plant (Acciona) from SCADA(2015) Muñoz Escribano, Mikel; Parra Laita, Íñigo de la; García Solano, Miguel; Marcos Álvarez, Javier; Pérez, Miguel; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISC; Ingeniería Eléctrica y ElectrónicaThis paper describes a tool developed for the performance evaluation and failure detection in a 45.6 MWp PV plant installed by the company Acciona in Amareleja (Portugal). The paper describes the PV plant configuration and its SCADA (Supervisory Control And Data Acquisition), the measured variables and the main functionalities of the software. Some of these functionalities are the automatic and accurate PSTC (Power under standard test conditions1) calculation for each generator and for the whole PV Plant, the reference production that would be delivered by the PV plant assuming a 100% availability, the hierarchy of SCADA alarms, the detection of long-term trends and degradation in PV generators, possible hidden problems in the different equipment and systems composing the PV plant, etc. This tool entered into operation in 2011 and is working properly since then.Publication Open Access Identification of critical parameters for the design of energy management algorithms for Li-ion batteries operating in PV power plants(IEEE, 2020) Berrueta Irigoyen, Alberto; Soto Cabria, Adrián; Marcos Álvarez, Javier; Parra Laita, Íñigo de la; Sanchis Gúrpide, Pablo; Ursúa Rubio, Alfredo; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, ReBMS PJUPNA1904; Gobierno de Navarra / Nafarroako Gobernua, 0011-1411-2018-000029 GERALithium-ion batteries are gaining importance for a variety of applications due to their price decrease and characteristics improvement. For a proper use of such storage systems, an energy management algorithm (EMA) is required. A number of EMAs, with various characteristics, have been published recently, given the diverse nature of battery problems. The EMA of deterministic battery problems is usually based on an optimization algorithm. The selection of such an algorithm depends on a few problem characteristics, which need to be identified and closely analyzed. The aim of this article is to identify the critical optimization problem parameters that determine the most suitable EMA for a Li-ion battery. With this purpose, the starting point is a detailed model of a Li-ion battery. Three EMAs based on the algorithms used to face deterministic problems, namely dynamic, linear, and quadratic programming, are designed to optimize the energy dispatch of such a battery. Using real irradiation and power price data, the results of these EMAs are compared for various case studies. Given that none of the EMAs achieves the best results for all analyzed cases, the problem parameters that determine the most suitable algorithm are identified to be four, i.e., desired computation intensity, characteristics of the battery aging model, battery energy and power capabilities, and the number of optimization variables, which are determined by the number of energy storage systems, the length of the optimization problem, and the desired time step.Publication Open Access Analysis of a CIS based PV generator versus a multicrystalline generator under outdoor long-term exposure(IEEE, 2021) Parra Laita, Íñigo de la; Guerra Menjívar, Moisés Roberto; Marcos Álvarez, Javier; García Solano, Miguel; Marroyo Palomo, Luis; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de ComunicaciónThe worldwide growth of the PV market has been almost exponential during the last years. Together with conventional crystalline (c-Si) PV modules, “new” commercially available PV technologies such as copper indium selenide (CIS) based solar cells have appeared achieving a similar efficiency comparable to c-Si at similar production cost. In addition to the use of cheaper materials, CIS solar cells manufacturers claim some enhancements such as lower temperature coefficient or higher absorption of diffuse light that achieve to reduce the cost of electrical energy. Although several papers deal with this topic, little is known about real comparisons between CIS technology and conventional crystalline at a PV generator level with real test conditions. This paper analyses the in-field performance and degradation of a commercially available CIS solar based PV generator compared to a conventional c-Si one during four years of operation attributing the differences observed to the possible factors that can influence in both technologies.Publication Open Access Analysis of polyamide and fluoropolymer backsheets: Degradation and insulation failure in field-aged photovoltaic modules(John Wiley & Sons, 2022) Pascual Miqueleiz, Julio María; García Solano, Miguel; Marcos Álvarez, Javier; Marroyo Palomo, Luis; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaDurability of photovoltaic (PV) modules is of great concern not only from the point of view of cost-effectiveness but also from the point of view of safety and sustainability. The backsheet of a PV module is one of the most critical parts of the PV module from the point of view of protection and also one of the most important sources of PV modules' failure; hence, it is of great importance to understand its different forms of failure. In this paper we analyze the case of an 8-MW PV plant, which had suffered a rapid degradation of their PV modules' backsheets. The case is especially relevant as all the PV modules are from the same model and manufacturer but with different backsheet materials (polyamide and fluoropolymer) and different times of exposure: on one hand, all PV modules originally installed in the plant (i.e., 6 years under operation when tested), and also, extra modules that had been stored indoors for replacement and had been mounted in the plant for less than 1 year when tested, serving as reference modules. In this paper we present the signs of degradation of these PV modules after different times of exposure under real operation using different on-field and laboratory tests. We propose different techniques for rapid diagnosis of backsheet degradation so that the problem can be detected at a very early stage, before it results in major energy losses or in safety issues.Publication Open Access On the on-site measurement of the degradation rate of crystalline silicon PV modules at plant level(IEEE, 2018) Pascual Miqueleiz, Julio María; Berrueta Irigoyen, Alberto; Marcos Álvarez, Javier; García Solano, Miguel; Marroyo Palomo, Luis; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de ComunicaciónThis paper proposes a method for measuring the degradation rate of crystalline silicon PV modules at plant level in two different ways as a form of verification. As actual levels of degradation rate have been observed to be as low as 0.2%/a, the uncertainties make it difficult to measure this value accurately at plant level. However, despite the low value, it is still important to know the actual degradation rate due to its impact on energy yield. In this paper, two ways of measuring the degradation rate at plant level are proposed. These two methods, with different uncertainty sources, are proposed to be used jointly in order to have a better approach to the real value. Finally, an example of measurement in a 1.78 MW PV plant is presented.